EQUAÇÕES DIFERENCIAIS APLICADAS PROGRAMA: 1) Equações Diferenciais de 1a Ordem a) Definição e classificação das equações diferenciais. b) Solução geral e solução particular. c) Equação de Variáveis Separáveis. d) Equação Homogênea. e) Equações Lineares. f) Equação Diferencial Exata. Fator Integrante. g) Aplicações. 2) Equações Diferenciais Lineares de Ordem n a) Classificação. b) Equações diferenciais lineares homogêneas de 2a ordem com coeficientes constantes. c) Equações diferenciais lineares homogêneas de ordem n com coeficientes constantes. d) Equações diferenciais lineares não-homogêneas de ordem n com coeficientes constantes. e) Método dos coeficientes a determinar para o cálculo de uma solução particular. f) Método da variação dos parâmetros para o cálculo de uma solução particular. g) Método dos operadores para o cálculo de uma solução particular. h) Equações diferenciais lineares de coeficientes variáveis. i) Equação de Euler-Cauchy, homogênea e não-homogênea. j) Equação de Euler-Cauchy generalizada. k) Método da Redução de Ordem. l) Aplicações. 3) Sistemas de Equações Diferenciais a) Método da Eliminação. b) Método dos Operadores. c) Método Matricial (autovalores e autovetores). d) Aplicações (sistemas massa-mola e circuitos elétricos). 4) Transformação de Laplace a) Definição e propriedades. Cálculo de integrais. b) Definição de Transformada Inversa de Laplace. Teorema de Lerch. Propriedades. c) Cálculo da Transformada Inversa de Laplace: por inspeção e por