Probabilidades de transición estacionaria de estados estables.
[pic]
Teorema Sea P la matriz de transición de una cadena de M estados . Existe entonces un vector [pic] tal que [pic]
Se establece que para cualquier estado inicial i , [pic] .
El vector [pic] a menudo se llama distribución de estado estable, o también distribución de equilibrio para la cadena de Markov. Para encontrar la distribución de probabilidades de estacionario para una cadena dada cuya matriz de transición es P, según el teorema, para n grande y para toda i , [pic] (1)
Como Pij (n + 1) = ( renglón i de Pn )(columna j de P), podemos escribir
[pic](2)
[pic] [pic] Ejemplo : Suponga que toda la industria de refrescos produce dos colas. Cuando …ver más…
Sea X0 el número de cámaras que se tiene en el momento de iniciar el proceso, X1 el número de cámaras que se tienen al final de la semana uno, X2 el número de cámaras al final de la semana dos, etc. Suponga que X0 = 3 . El sábado en la noche la tienda hace un pedido que le entregan el lunes en el momento de abrir la tienda. La tienda hace un pedido que le entregan el lunes en el momento de abrir la tienda. La tienda usa la siguiente política ( s, S)1 para ordenar : si el número de cámaras en inventario al final de la semana es menor que s =1 (no hay cámaras en la tienda), ordenar (hasta) S=3. De otra manera, no coloca la orden (si se cuenta con una o más cámaras en el almacén, no se hace el pedido). Se supone que las ventas se pierden cuando la demanda excede el inventario. Entonces, {X1} para t = 0, 1, .. es un proceso estocástico de la forma que se acaba de describir. Los estados posibles del proceso son los enteros 0, 1, 2, 3 que representan el número posible de cámaras en inventario al final de la semana. Donde Xt es el número de cámaras en inventario al final de la semana t y se comienza con [pic], Suponga que ocurrió lo siguiente: [pic] En este caso, el tiempo de primer paso para ir al estado 3 al estado 1 es dde 2 semanas, el tiempo de primer paso para ir del estado 3 al estado 0 es de 3 semanas y el tiempo de recurrencia del estado 3 es de 4