Metodos numericos(glosario)
METODOS NUMERICOS 1. método numérico: Es una técnica mediante las cuales es posible formular problemas matemáticos de tal forma que puedan resolverse usando operaciones aritméticas y 2. análisis numérico: El análisis numérico trata de señalar métodos para aproximar de una manera eficiente las soluciones de problemas expresados matemáticamente. El objetivo principal del análisis numérico es encontrar soluciones aproximadas a problemas complejos utilizando solo las operaciones más simples de la aritmética. 3. Cifra significativa: Son todos los dígitos distintos a cero. 4. Erro por redondeo: Es aquel tipo de error en donde el número significativo de dígitos después del decimal se ajusta a un número …ver más…
14. Raíz de una ecuación: Es uno de los problemas más antiguos en matemáticas y se han realizado un gran número de esfuerzos en este sentido. Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales. 15. Intervalo: se denomina intervalo a la máxima división sectorial sumisa, es decir al subconjunto de la doble implicación latente en matemáticas subconjunto conexo de la recta real. Más precisamente, son las únicas partes I de R que verifican la siguiente propiedad 16. Raíces aproximadas: La raíz aproximada de la función es 1.000391 con un error de 0.01 17. Valores iníciales: Se resume en la siguiente tabla el valor de las variables en estado estacionario tomando como fijas las siguientes alícuotas: t k = 0.1 y ?i =0.05. 18. Métodos gráficos: El método gráfico se utiliza para la solución de problemas de PL, representando geométricamente a las restricciones, condiciones técnicas y el objetivo 19. Raíz entera: De un número n es el mayor número natural cuyo cuadrado es menor o igual a n. Así, la raíz cuadrada entera de 200 es 14 porque 142 = 196 < 200 mientras que el cuadrado de 15 supera a 200 20. Raíces racionales: es la de un numero positivo 21. Raíces irracionales: es la de un numero negativo. 22. Raíces complejas: