Definicion De Maximos Y Minimos
Dada una función vamos a definir intuitivamente sus máximos y sus mínimos. Una función tiene un máximo relativo en un punto cuando su imagen (la altura) es mayor que todas las imágenes (alturas) de los puntos que están alrededor.
Una función tiene un mínimo relativo en un punto cuando su imagen (la altura) es menor que todas las imágenes (alturas) de los puntos que están alrededor. Un máximo se llamará absoluto cuando su imagen es mayor que la imagen de cualquier otro punto de la gráfica (es el más alto de todos) y no sólo de los que está alrededor.
Un mínimo se llamará absoluto cuando su imagen es menor que la imagen de cualquier otro punto de la gráfica (es el más bajo de todos) …ver más…
Curva sin máximos ni mínimos función sin máximos ni mínimos
-------------------------------------------------
“Criterio de la primera derivada”
Se llama Criterio de la primera derivada al método o teorema utilizado frecuentemente en el cálculo matemático para determinar los mínimos y máximos relativos que pueden existir en una función mediante el uso de la primera derivada o derivada principal, donde se observa el cambio de signo, en un intervalo abierto señalado que contiene al punto crítico .
-------------------------------------------------
Teorema valor máximo y mínimo
"Sea un punto crítico de una función que es continua en un intervalo abierto que contiene a . Si es derivable en el intervalo, excepto posiblemente en , entonces puede clasificarse como sigue."
1. Si ' cambia de positiva a negativa en , entonces tiene un máximo relativo en .
2. Si ' cambia de negativa a positiva en , entonces tiene un mínimo relativo en .
3. Si ' es positiva en ambos lados de o negativa en ambos lados de c, entonces no es ni un mínimo ni un máximo relativo. El criterio no decide.
-------------------------------------------------
“Criterio de la segunda derivada”
El Criterio o prueba de la segunda derivada es un teorema o método del cálculo matemático en el que se utiliza la segunda derivada para efectuar una prueba simple correspondiente a los máximos y mínimos relativos.
Se basa en el hecho de que si la gráfica de una función