Roma bizancio
El límite de una función es un concepto fundamental del cálculo diferencial matemático.
Informalmente, el hecho que una función f tiene un límite L en el punto p, significa que el valor de f puede ser tan cercano a L como se desee, tomando puntos suficientemente cercanos a p, pero distintos de p.
Aunque implícita en el desarrollo del Cálculo de los siglos XVII y XVIII, la notación moderna del límite de una función se remonta a Bolzano quien, en 1817, introdujo las bases de la técnica épsilon-delta.[]
Sin embargo, su trabajo no fue conocido mientras él estuvo vivo. Cauchy expuso límites en su Cours d'analyse (1821) y parece haber expresado la esencia de la idea, pero no en una manera sistemática.[]
La primera …ver más…
lim (f(x)/g(x)) = lim f(x) / lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m, entonces el limite de la función f g , en el punto x = a, es l m. lim (f(x))g(x) = lim (f(x))lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m, entonces el limite de la función f(g(x)) (suponiendo que tenga sentido) en el punto x = a, es l.
LIMITES DE FUNCIONES
← Las funciones polinómicas son las funciones
[pic]
donde [pic]es un polinomio en [pic], [pic], es decir, una suma finita de potencias de [pic]multiplicados por coeficientes reales, de la forma:
[pic]
← Funciones trigonométricas es el proceso matemático de encontrar el ritmo al cual una función trigonométrica cambia respecto de la variable independiente; es decir, la derivada de la función. Las funciones trigonométricas más habituales son las funciones sin(x), cos(x) y tan(x). Por ejemplo, al derivar f(x) = sin(x), se está calculando la función f'(x) tal que da el ritmo de cambio del sin(x) en cada punto x.
[pic]
← Funciones Logarítmica:
Se llama función logarítmicas a la función real, entonces es una aplicación biyectiva definida: ← Función ← exponencial Es una función real que tiene la propiedad