Anticientificismo
La distribución normal fue reconocida por primera vez por el francés Abraham de Moivre (1667-1754). Posteriormente, Carl Friedrich Gauss (1777-1855) elaboró desarrollos más profundos y formuló la ecuación de la curva; de ahí que también se la conozca, más comúnmente, como la "campana de Gauss". La distribución de una variable normal está completamente determinada por dos parámetros, su media y su desviación estándar, denotadas generalmente por y . Con esta notación, la densidad de la normal viene dada por la ecuación:
Ecuación 1: que determina la curva en forma de campana que tan bien conocemos (Figura 2). Así, se dice que una característica sigue una distribución normal de media y varianza , y se denota como …ver más…
Consideremos, por ejemplo, el siguiente problema: supongamos que se sabe que el peso de los sujetos de una determinada población sigue una distribución aproximadamente normal, con una media de 80 Kg y una desviación estándar de 10 Kg. ¿Podremos saber cuál es la probabilidad de que una persona, elegida al azar, tenga un peso superior a 100 Kg?
Denotando por X a la variable que representa el peso de los individuos en esa población, ésta sigue una distribución . Si su distribución fuese la de una normal estándar podríamos utilizar la Tabla 1 para calcular la probabilidad que nos interesa. Como éste no es el caso, resultará entonces útil transformar esta característica según la Ecuación 2, y obtener la variable: para poder utilizar dicha tabla. Así, la probabilidad que se desea calcular será: Como el área total bajo la curva es igual a 1, se puede deducir que: Esta última probabilidad puede ser fácilmente obtenida a partir de la Tabla 1, resultando ser . Por lo tanto, la probabilidad buscada de que una persona elegida aleatoriamente de esa población tenga un peso mayor de 100 Kg , es de 1–0.9772=0.0228, es decir, aproximadamente de un 2.3%.
De modo análogo, podemos obtener la probabilidad de que el peso de un sujeto esté entre 60 y 100 Kg: De la Figura 2, tomando a=-2 y b=2, podemos deducir que: Por el ejemplo previo, se sabe que . Para la segunda probabilidad, sin embargo, encontramos el problema de que las tablas estándar no