Calculo ii - derivadas usando a definição de limite
Os problemas seguintes requerem o uso da definição de derivada por limite, logo: 1) Use a definição de derivada via limite para calcular a derivada f'(x), para:
1.a) f^' (x)=lim┬(∆x→0)〖(f(x+∆x)-f(x))/∆x〗 f^' (x)=lim┬(∆x→0)〖((1/2(x+∆x)-3/5)-(1/2 x-3/5))/∆x〗 f^' (x)=lim┬(∆x→0)〖(x/2+∆x/2-3/5-x/2+3/5)/∆x〗 f^' (x)=lim┬(∆x→0)〖(∆x/2)/∆x〗 f^' (x)=lim┬(∆x→0)〖∆x/2*1/∆x〗=1/2
1.b) f^' (x)=lim┬(∆x→0)〖(f(x+∆x)-f(x))/∆x〗 f^' (x)=lim┬(∆x→0)〖((5(x+∆x)^2-3(x+∆x)+7)-(5x^2-3x+7))/∆x〗 f^' (x)=lim┬(∆x→0)〖((5*(x^2+2*x*∆x+〖∆x〗^2)-3x-3∆x+7)-5x^2+3x-7)/∆x〗 f^' (x)=lim┬(∆x→0)〖(5x^2+10*x*∆x+5〖∆x〗^2-3x-3∆x+7-5x^2+3x-7)/∆x〗 f^' (x)=lim┬(∆x→0)〖(10*x*∆x+5〖∆x〗^2-3∆x)/∆x〗 f^' (x)=lim┬(∆x→0)〖(∆x(10x+5∆x-3))/∆x〗 f^' (x)=lim┬(∆x→0)〖10x+5∆x-3〗 f^' (x)=lim┬(∆x→0)〖10x+5*0-3〗=10x-3
1.c) f^' (x)=lim┬(∆x→0)〖(f(x+∆x)-f(x))/∆x〗 f^' (x)=lim┬(∆x→0)〖((4-√((x+∆x)+3))-(4-√(x+3)))/∆x〗 f^' (x)=lim┬(∆x→0)〖(√(x+3)-√((x+∆x)+3))/∆x〗*(√(x+3)+√((x+∆x)+3))/(√(x+3)+√((x+∆x)+3)) f^' (x)=lim┬(∆x→0)〖((x+3)-(x+∆x+3))/(∆x(√(x+3)+√((x+∆x)+3)))〗 f^' (x)=lim┬(∆x→0)〖(-∆x)/(∆x(√(x+3)+√((x+∆x)+3)))〗 f^' (x)=lim┬(∆x→0)〖(-1)/(√(x+3)+√((x+∆x)+3))〗 f^' (x)=lim┬(∆x→0)〖(-1)/(√(x+3)+√(x+3))〗 f^' (x)=lim┬(∆x→0)〖(-1)/(2√(x+3))〗
1.d) f^' (x)=lim┬(∆x→0)〖(f(x+∆x)-f(x))/∆x〗
f^'