Urbanizacion de la serena
Cómo hacer una Regresión Logística con SPSS© “paso a paso”. (I)
Aguayo Canela, Mariano.
Servicio de Medicina Interna. Hospital Universitario Virgen Macarena. Sevilla
Resumen
En este primer documento sobre la Regresión Logística (Binaria) se aportan los conceptos básicos teóricos para llevarla a cabo, junto con recomendaciones elementales para una correcta aplicación del análisis, y luego se explican detalladamente las opciones que tiene el programa estadístico SPSS y la interpretación de los principales resultados.
0. Introducción.
0.1. RECORDATORIO TEÓRICO.
Cuando tengamos una variable dependiente dicotómica (0/1; SI/NO; VIVO/MUERTO; CURADO/NO-CURADO, HIPERTENSIÓN/NORMOTENSIÓN, etc.) que …ver más…
2 1
OR = eβ, siendo el número “e” la base de los logaritmos neperianos (una constante cuyo valor es 2,718). Correspondencia: marianoaguayo@telefonica.net
1 de 16
Aguayo Canela, Mariano
DocuWeb fabis.org, 2007
un valor x frente a la probabilidad que tiene un individuo con valor (x-1). Por ejemplo, si X es la variable EDAD (en años cumplidos) y estamos prediciendo muerte, la OR será la probabilidad de muerte que tiene, por ejemplo, un individuo de 40 años en relación a la que tiene uno de 39 años.3 Si la variable independiente es cualitativa, la RL sólo admite categóricas dicotómicas, de manera que la OR es el riesgo de los sujetos con un valor frente al riesgo de los sujetos con el otro valor para esa variable.
3. En la RL la variable dependiente (la que se desea modelizar, Y) es categórica, habitualmente dicotómica (RL binaria), lo que constituye una circunstancia muy frecuente y simple de representar fenómenos en la naturaleza y en ciencias de la vida: SI/NO, PRESENTE/AUSENTE, etc. Esto hace a este tipo de análisis el ideal para aplicar en los estudios de casos y controles, estudios en los que los casos tienen algo (habitualmente una enfermedad, un efecto o un desenlace) y los controles no. 4. Lo que se pretende mediante la RL es expresar la probabilidad de que ocurra el evento en cuestión como función de ciertas variables, que se presumen relevantes o influyentes. Si ese