Termodinamica
En el estudio del cambio de una función, es decir, cuando cambian sus variables independientes es de especial interés para el cálculo diferencial el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambio tiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya …ver más…
Una función es diferenciable en un punto si su derivada existe en ese punto; una función es diferenciable en un intervalo si lo es en cada punto perteneciente al intervalo. Si una función no es continua en f, entonces no puede ser diferenciable en f; sin embargo, aunque una función sea continua en F, puede no ser diferenciable. Es decir, toda función diferenciable en un punto F es continua en F, pero no toda función continua en F es diferenciable en F (como f(x) = |x| es continua pero no diferenciable en x = 0).
[editar]Definición de Derivada
Las derivadas se definen tomando el límite de la pendiente de las rectas secantes conforme se van aproximando a la recta tangente.
Es difícil hallar directamente la pendiente de la recta tangente de una función porque sólo conocemos un punto de ésta, el punto donde ha de ser tangente a la función. Por ello, aproximaremos la recta tangente por rectas secantes. Cuando tomemos el límite de las pendientes de las secantes próximas, obtendremos la pendiente de la recta tangente.
Para obtener estas pendientes, tomemos un número arbitrariamente pequeño que llamaremos h. h representa una pequeña variación en x, y puede ser