Solucionario De Calculo De Larson 8 Edicion
5564 palabras
23 páginas
CHAPTER 1Limits and Their Properties
Section 1.1
A Preview of Calculus . . . . . . . . . . . . . . . . . . . 305
Section 1.2
Finding Limits Graphically and Numerically . . . . . . . 305
Section 1.3
Evaluating Limits Analytically . . . . . . . . . . . . . . . 309
Section 1.4
Continuity and One-Sided Limits
Section 1.5
Infinite Limits
Review Exercises
. . . . . . . . . . . . . 315
. . . . . . . . . . . . . . . . . . . . . . . 320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
CHAPTER 1
Limits and Their Properties
Section 1.1
A Preview of Calculus
Solutions to Even-Numbered Exercises
2. …ver más…
f x
x→3
4 0 be given. Take
0. Let
m
.
Evaluating Limits Analytically
xc
such that 0 < x
If 0 < x
c<
b
mc
b
x→c
2.
mc
L < 1L
2
b.
(a) lim g x
2.4
(b) lim g x
,x
c,
> 0.
4
x→4
x→0
0
4.
(a) lim f t
10
t→4
0
(b) lim f t
−5
5
t→ 1
10
10
−5
− 10
12
x x 2
x→ 2
x2
10. lim
x→1
14. lim
x→ 3
18. lim
x→3
3
3
x x 22. lim 2x x→0 1
1
4
2
3
2x2
4
x→ 3
2
1
2
3
1
4
31
34
3
12. lim 3x3
0
x→1
2
20
3
5
4
16. lim
x→3
2
1
2x x 20. lim 3 x
2
2
1
tt
8. lim 3x
8
2 x ft
9
6. lim x3
x→4
3
1
23
3
3
42
(c) lim g f x
x→4
(b) lim g x
2 42
34
3
6
21
x → 21
(c) lim g f x
g 21
x→4
30. lim sin x→1 x
2
lim cos x
x→5
3
sin
cos
5
3
21
28. lim tan x
tan
x→
3
21
3
8
4
2
7
4
16
16
0
3
3
32. lim cos 3x
1
2
1
7
3
5
g4
x→ 3
2
31
3
x→ 3 x→4 26. (a) lim f x
3
4
24. (a) lim f x
(b) lim g x
34.
,c
Evaluating Limits Analytically
10
gx
1
2 L.
L<
implies g x
Hence for x in the interval c
<
b
which shows that lim mx
Section 1.3
1