Planificación y control de desembolsos de capital.
En matemática, la palabra "nada" no tiene ningún significado preciso, es polisémica. En lógica matemática, el concepto de nada se designa usando la negación y los cuantificadores: ~\neg \exists x o ~\nexists x, que puede leerse "no-algo", o su equivalente ~\forall x \neg, que puede leerse "todo-no". En teoría de conjuntos, la nada es el conjunto vacío: ~\varnothing, que se refiere a un conjunto sin elementos.2 En álgebra, la nada es el elemento neutro: ~e, que puede referirse al cero (con respecto a la suma), al uno (con respecto a la multiplicación), a la función identidad (con respecto a la composición de funciones), a la matriz de ceros (con respecto a la suma de matrices), a la matriz identidad (con …ver más…
Tan es así que en la llamada aniquilación partícula-antipartícula, un caso particular del teorema ontológico arriba mostrado, no existe realmente tal aniquilación o destrucción. Se refieran ~e^+ a un positrón, ~e^- a un electrón y ~\gamma a un fotón, entonces
~e^- \dot + e^+ \ne \Box, sino que ~e^- \dot + e^+ = \gamma \dot +