Incremento de una variable
Si y es una función de x , es decir, si , y la variable x de cambia de a , entonces el incremento de x , representado por es igual a: y el correspondiente incremento en y , representado por , es: , o de manera equivalente El incremento de una variable puede ser positivo o negativo, según si, el valor de la variable aumente o disminuya.
DIFERENCIAL
La forma en que hemos abordado el concepto de derivada, aunque existen varios conceptos, fue el encontrar la relación de la pendiente de la línea recta y´ =f ´(x) que era tangente a la función. Para un punto en …ver más…
La continuidad asegura que los límites en las tres definiciones existen y dan el mismo valor por eso podemos asegurar que el valor de es el mismo independientemente de cómo elijamos los valores de x para evaluar la función (extremo derecho, extremo izquierdo o cualquier punto en cada subintervalo). Enunciamos entonces una definición más general.
Definición de integral definida: Sea f una función continua definida para a £ x £ b. Dividimos el intervalo [a, b] en n subintervalos de igual ancho D x = . Sean x0 = a y xn = b y además x0, x1, ...., xn los puntos extremos de cada subintervalo. Elegimos un punto ti en estos subintervalos de modo tal que ti se encuentra en el i-ésimo subintervalo [xi-1, xi] con i= 1, .., n.
Entonces la integral definida de f de a a b es el número =.
La integral definida es un número que no depende de x. Se puede utilizar cualquier letra en lugar de x sin que cambie el valor de la integral.
Aunque esta definición básicamente tiene su motivación en el problema de cálculo de áreas, se aplica para muchas otras situaciones. La definición de la integral definida es válida aún cuando f(x) tome valores negativos (es decir cuando la gráfica se encuentre debajo del eje x). Sin embargo, en este caso el número resultante no es el área entre la gráfica y el eje x.
Observación: La suma que aparece en la definición de integral definida se llama suma de