Funciones generales de la orientacion educativa
Recta tangente a una curva en un punto
La recta tangente a a una curva en un punto es aquella que pasa por el punto (a, f(a)) y cuya pendiente es igual a f '(a).
[pic]
Ejemplo: Hallar la ecuación de la recta tangente a la parábola y = x2 - 5x + 6 paralela a la recta y =-3x -2 La pendiente de esta recta es m= -3 f'(a) = 2a – 5 2a − 5 = −3 a = 1
El punto de tangencia es P(1, 2)
La recta tangente es y − 2= -3 (x − 1) y = -3x + 5
Recta normal a una curva en un punto
La recta normal a a una curva en un punto a es aquella que pasa por el punto (a, f(a)) y cuya pendiente es igual a la inversa de la opuesta de f '(a).
[pic]
Ejemplo:Hallar la ecuación de la recta tangente y normal a la parábola y …ver más…
Hallar el punto de tangencia.
3.-Hallar los coeficientes de la ecuación y = ax2 + bx + c, sabiendo que su gráfica pasa por (0, 3) y por (2, 1)., y en este último punto su tangente tiene de pendiente 3.
4.-La gráfica de la función y = ax2 + bx + c pasa por los puntos (2, 3) y (3, 13). siendo la tangente a la misma en el punto de abscisa 1 paralela a la bisectriz del primer cuadrante. Hallar el valor numérico de a, b y c.
5.-Dada la función f(x) = ax3 + bx2 + cx + d, determina a, b, c y d; sabiendo que la curva pasa por los puntos (−1, 2) (2, 3), y que las tangentes a ellas en los puntos de abscisa 1 y −2 son paralelas al ejes de abscisas.
Problemas de optimización de funciones
1.-Un triángulo isósceles de perímetro 30 cm, gira alrededor de su altura engendrando un cono. ¿Qué valor debe darse a la base para que el volumen del cono sea máximo?
2.-Se pretende fabricar una lata de conserva cilíndrica (con tapa) de 1 litro de capacidad. ¿Cuáles deben ser sus dimensiones para que se utilice el mínimo posible de metal?
3.-Descomponer el número 44 en dos sumandos tales que el quíntuplo del cuadrado del primero más el séxtuplo del cuadrado del segundo sea un mínimo.
4.-Se tiene un alambre de 1 m de longitud y se desea dividirlo en dos trozos para formar con uno de ellos un círculo y con el otro un cuadrado. Determinar la longitud que se ha de dar a cada uno de los trozos para que la suma de las áreas del círculo y del