Calculo Diferencial Unidad2 Funciones
1906 palabras
8 páginas
Unidad 2_ funciones variable= algo que cambia respecto al tiempo x, y , zconstante= un numero permanente, valor fijo
En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio) y otro conjunto de elementos Y (llamado codominio) de forma que a cada elemento x del dominio le corresponde un único elemento f(x) del codominio (los que forman el recorrido, también llamado rango o ámbito). En matemáticas, el dominio (conjunto de definición o conjunto de partida) de una función es el conjunto de existencia de ella misma, es decir, los valores para los cuales la función está definida. Es el conjunto de todos los objetos que puede transformar, se denota o bien y está definido por:
En se denomina …ver más…
• Función Sobreyectiva:
Sea f una función de A en B , f es una función epiyectiva (tambien llamada sobreyectiva) , si y sólo si cada elemento de B es imagen de al menos un elemento de A , bajo f .
A elementos diferentes en un conjunto de partida le corresponden elementos iguales en un conjunto de llegada. Es decir, si todo elemento R es imagen de algún elemento X del dominio.
Ejemplo:
A = { a , e , i , o , u }
B = { 1 , 3 , 5 , 7 } f = { ( a , 1 ) , ( e , 7 ) , ( i , 3 ) , ( o , 5 ) , ( u , 7 ) }
Simbólicamente:
f: A B es biyectiva Û f es inyectiva y f es sobreyectiva
Función Biyectiva:
Sea f una función biyectiva de A en B, si y sólo si f es epiyectiva e inyectiva a la vez, es decir que todos los elementos del conjunto inicial (A) tengan una imagen distinta en el conjunto de llegada (B) (inyectiva), y que ademas el recorrido sea igual al conjunto de llegada (epiyectiva)
Una condicion necesaria y suficiente es que la cardinalidad del conjunto inicial sea igual a la cardinalidad del conjunto final.
• Función Biyectiva:
Sea f una función de A en B , f es una función biyectiva , si y sólo si f es sobreyectiva e inyectiva a la vez .
Si cada elemento de B es imagen de un solo elemento de