Riesgo e incertidumbre
La geometría, como palabra, tiene dos raíces griegas: geo = tierra y metrón = medida, es decir, significa "medida de la tierra".Es la rama de las matemáticas que se ocupa de las propiedades del espacio. En su forma más elemental, la geometría se preocupa de problemas métricos como el cálculo del área y diámetro de figuras planas y de la superficie y volumen de cuerpos sólidos. Otros campos de la geometría son la geometría analítica, geometría descriptiva, topología, geometría de espacios con cuatro o más dimensiones, geometría fractal, y geometría no euclídea.
Geometría en la Antigüedad
Su origen puede considerarse que data de unos tres mil años antes de Cristo, pues se puede pensar que los primeros orígenes de la …ver más…
Un conjunto de teoremas sobre las propiedades de puntos, líneas, ángulos y planos se puede deducir lógicamente a partir de estos axiomas.
Entre estos teoremas se encuentran: "la suma de los ángulos de cualquier triángulo es igual a la suma de dos ángulos rectos", y "el cuadrado de la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados de los catetos" (conocido como teorema de Pitágoras).
La geometría demostrativa de los griegos, que se ocupaba de polígonos y círculos y de sus correspondientes figuras tridimensionales, fue mostrada rigurosamente por el matemático griego Euclides, en su libro "Los elementos". El texto de Euclides, a pesar de sus imperfecciones, ha servido como libro de texto básico de geometría hasta casi nuestros días.
Euclides, usando un razonamiento deductivo parte de conceptos básicos primarios no demostrables tales como punto, recta, plano y espacio, que son el punto de partida de sus definiciones, axiomas y postulados. Demuestra teoremas y a su vez, éstos servirán para demostrar otros teoremas. Crea nuevos conocimientos a partir de otros ya existentes por medio de cadenas deductivas de razonamiento lógico. Esta geometría, llamada geometría euclidiana se basa en lo que históricamente se conoce como 5º postulado de Euclides: "por un punto situado fuera de una recta se puede trazar una y sólo una paralela a ella".
Existen otras geometrías que no