La figura de la prenda en costa rica
3. OPERACIONES CON FUNCIONES.
Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos la composición de funciones y la función inversa de una función; estos dos conceptos –composición e inversión de funciones- son importantes en el desarrollo del cálculo. Reconocer una suma, producto, cociente o composición de funciones es útil porque permite descomponer funciones complicadas en otras más sencillas.
3.1 Álgebra de funciones.
En esta sección consideraremos las operaciones con funciones. Las funciones obtenidas a partir de estas operaciones –llamadas la suma, …ver más…
Entonces (f⋅g)(x) = f(x) g(x) = ( x + 2 )( x - 2) = x2 - 4.
El dominio de f es (−∞, ∞) y el dominio de g es (−∞, ∞). Por tanto el dominio de f ⋅ g es
Df ∩ Dg = (−∞, ∞).
Ejemplo 3.5.
Sea f(x) = | x | y g(x) = 5. Entonces (f ⋅g)(x) = f(x) g(x) = | x |⋅5. El dominio de f es 3 y el dominio de g es 3. Entonces el dominio de f ⋅ g es Df ∩ Dg = 3. Si x = -2, entonces (f ⋅
g)(-2) = f(-2) ⋅ g(-2) = |-2|5 = 2⋅5 = 10.
Definición 3.4.
Sean f y g dos funciones y Df , Dg sus dominios respectivamente. Entonces la función f/g está definida por:
(f/g)(x) = f(x)/g(x) , g(x) ≠ 0
El dominio de f /g es Df ∩ Dg excluyendo los valores de x para los cuales g(x)
= 0.
Ejemplo 3.6.
Si f(x) = x + 4 y g(x) = x2 – 1. Entonces (f/g) (x) = f(x) / g(x) = x + 4/(x2 – 1). El dominio de f y el de g son los números reales. La función g(x) = x2 – 1 es cero para x =
1 y x = -1. Por lo tanto el dominio de f/g es R – {-1, 1}
Ejemplo 3.7.
Si f(x) =
x y g(x) =
− x . Encuentre (f/g) (x).
Solución:
El dominio de f es [0, ∞) y el dominio de g es (-∞, 0]. Entonces Df ∩Dg = {0}, pero g(x) = − x es cero para x = 0. Ahora el dominio de f/g es Df ∩Dg excluyendo los valores para los cuales g(x) es igual a cero. Por lo tanto el dominio de f/g es el conjunto vacío. De donde se tiene que la función (f/g)(x) = x / − x no tiene dominio.
Ejemplo 3.8
Sea f(x) = 4 − x 2 y g(x) = 3x + 1. Encuentre a) la suma, b) la diferencia, c) el producto y d) la división de f y g.