Importancia de dormir
El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal. Un problema en su forma estándar se puede representar como:
X, Xs ≥ 0.
Donde X son las variables de decisión de la forma estándar, Xs son las variables de holgura o de exceso, c contiene los coeficientes de la función objetivo y Z es la variable a ser maximizada o minimizada.
El sistema es no determinado, debido a que el número de variables excede el número de ecuaciones. La diferencia entre el número de variables y el número de ecuaciones nos da los grados de libertad asociados con el problema.
Cualquier solución, óptima o no, incluirá un …ver más…
+ cn•xn
Sujeto a: a11•x1 + a12•x2 + ... + a1n•xn = b1 a21•x1 + a22•x2 + ... + a2n•xn = b2
...
am1•x1 + am2•x2 + ... + amn•xn = bm x1,..., xn ≥ 0
Para ello se deben cumplir las siguientes condiciones:
1. El objetivo es de la forma de maximización o de minimización.
2. Todas las restricciones son de igualdad.
3. Todas las variables son no negativas.
4. Las constantes a la derecha de las restricciones son no negativas.
5.
Cambio del tipo de optimización.
Si en nuestro modelo, deseamos minimizar, podemos dejarlo tal y como está, pero deberemos tener en cuenta nuevos criterios para la condición de parada (deberemos parar de realizar iteraciones cuando en la fila del valor de la función objetivo sean todos menores o iguales a 0), así como para la condición de salida de la fila. Con objeto de no cambiar criterios, se puede convertir el objetivo de minimizar la función F por el de maximizar F• (-1).
Ventajas: No deberemos preocuparnos por los criterios de parada, o condición de salida de filas, ya que se mantienen.
Inconvenientes: En el caso de que la función tenga todas sus variables básicas positivas, y además las restricciones sean de desigualdad "≤", al hacer el cambio se quedan negativas y en la fila del valor de la función objetivo se quedan positivos, por lo que se cumple la condición de parada, y por defecto el valor óptimo que se obtendría es 0.
Solución: En la realidad no existen este tipo de