
The Interactive Nature of Computing: Refuting
the Strong Church–Turing Thesis

Dina Goldin Æ Peter Wegner

Received: 28 March 2006 / Accepted: 21 November 2007 / Published online: 1 January 2008

� Springer Science+Business Media B.V. 2007

Abstract The classical view of computing positions computation as a closed-box

transformation of inputs (rational numbers or finite strings) to outputs. According to

the interactive view of computing, computation is an ongoing interactive process
rather than a function-based transformation of an input to an output. Specifically,

communication with the outside world happens during the computation, not before

or after it. This approach radically changes our understanding of what is compu-

tation and how it is modeled. The acceptance of interaction as a new paradigm is

hindered by the Strong Church–Turing Thesis (SCT), the widespread belief that

Turing Machines (TMs) capture all computation, so models of computation more

expressive than TMs are impossible. In this paper, we show that SCT reinterprets

the original Church–Turing Thesis (CTT) in a way that Turing never intended; its

commonly assumed equivalence to the original is a myth. We identify and analyze

the historical reasons for the widespread belief in SCT. Only by accepting that it is

false can we begin to adopt interaction as an alternative paradigm of computation.

We present Persistent Turing Machines (PTMs), that extend TMs to capture

sequential interaction. PTMs allow us to formulate the Sequential Interaction
Thesis, going beyond the expressiveness of TMs and of the CTT. The paradigm shift

to interaction provides an alternative understanding of the nature of computing that

better reflects the services provided by today’s computing technology.

Keywords Interactive computation � Church–Turing Thesis � Turing Machines �
Strong Church–Turing Thesis � Persistent Turing Machines �
Sequential Interaction Thesis � Computation expressiveness � Paradigm shift

D. Goldin (&) � P. Wegner

Computer Science Department, Brown University, Box 1910, Providence, RI 02912, USA

e-mail: dqg@cs.brown.edu

123

Minds & Machines (2008) 18:17–38

DOI 10.1007/s11023-007-9083-1



Introduction

Computer science, like other disciplines, aims to describe its nature by fundamental

principles that distinguish its goals and methods from those of related disciplines.

Physics relied for centuries on Newton’s principles of motion; likewise, computer

science has been relying on Turing Machines and algorithms in the last several

decades as the defining principles of our discipline.

The nature of principles evolves as the discipline evolves, and new principles

replace old ones. These new principles may be seriously questioned by believers in

old principles. Thus physical principles of Copernicus, Newton, and Einstein were

seriously questioned when first proposed, and there is still a controversy between

Einstein’s relativity theory and the quantum theory of Bohr and Heisenberg.

Similarly, Darwin’s principles of evolution and natural selection were (and still are)

questioned, in spite of their experimental validity.

Hilbert’s principle that formal mathematical theorems were provable by logical

inference was questioned by Godel, Turing, and Church, who argued that logic

cannot completely prove all mathematical theorems. Turing’s proof (Turing 1936)

introduced a new model, Turing Machines (TMs), and showed that there are

problems, such as the Halting Problem, that they cannot solve, despite their

expressiveness. That expressiveness was captured by the Church–Turing Thesis
(CTT), stating that TMs can compute any effective (partially recursive) function

over naturals (strings). (See Cleland 2007 for a longer discussion of the history of

CTT.)

While originally introduced by Turing as a tool for rejecting Hilbert’s principle,

TMs have since been used for establishing the principles of computer science. His

thesis has been greatly misunderstood; many of the myths about it are nicely

detailed in Copeland (1997). An example of an alternate thesis that is sometimes

conflated with the original is the so-called Physical Church–Turing Thesis (PCT):

PCT: A function is effective computable by a physical system iff it is Turing

machine computable.

This formulation is quoted from Fitz (1997), where PCT is discussed extensively.

Copeland (1997) provides a good refutation of PCT, stressing that CTT only applies

to effective computation (in the original sense of this term), rather than computation

by arbitrary physical machines, dynamical systems, or humans (as in Cleland 2004;

Sieg 2005 among others).

In the computer science community, it is generally understood that CTT applies

only to effective computation, in Turing’s sense of the word. However, it is not

always appreciated that CTT applies only to computation of functions, rather than to

all computation. Function-based computation transforms a finite input into a finite

output in a finite amount of time, in a closed-box fashion. By contrast, the general

notion of computation includes arbitrary procedures and processes—which may be

open, non-terminating, and involving multiple inputs interleaved with outputs.

The Strong Church–Turing Thesis (SCT), which asserts that TMs capture all
effective computation, is generally considered to be equivalent to the original CTT:

18 D. Goldin, P. Wegner

123



SCT: Every effective computation can be carried out by a TM.

This formulation can be found, among others, at the beginning of Copeland

(1997), where it is claimed equivalent to the original thesis.

SCT has become a fundamental principle of computer science, defining the

nature of our discipline. Stated informally, it asserts that TMs can do ‘‘everything

that computers can do’’; this quote is from Sipser (2005), a leading textbook for

theory of computation.

All versions of the SCT historically evolve from the assumption that all

computation is function-based, or algorithmic1; by this, we mean that its job is to

transform a finite input into a finite output in a finite amount of time. We believe it is

time to recognize that today’s computing applications, such as web services,

intelligent agents, operating systems, and graphical user interfaces, are interactive
rather than algorithmic; their job is to provide ongoing services over time (Wegner

1997).

According to the interactive view of computation, interaction (communication

with the outside world) happens during the computation, not before or after it.

Hence, computation is an ongoing process rather than a function-based transfor-

mation of an input to an output. The interactive approach represents a paradigm shift

that redefines the nature of computer science, by changing our understanding of

what computation is and how it is modeled. This view of computation is not

modeled by TMs, which capture only the computation of functions; alternative

models are needed.

Interaction Machines are models of computation that extend TMs with

interaction to capture the behavior of concurrent systems, promising to bridge the

fields of computation theory and concurrency theory. We present one such model of

interaction, Persistent Turing Machines (PTMs), originally formalized in Goldin

et al. (2004). PTMs capture sequential interactive computation and allow us to

formulate the Sequential Interaction Thesis, going beyond the expressiveness of

TMs and of the CTT.

The idea that interaction machines are more expressive than TMs seems to

question the accepted dogma, hindering its acceptance within the theoretical

computer science community. However, it does not reject the original CTT, which

only refers to the computation of functions, and thus specifically excludes

interactive computation. By referring to all computation, SCT reinterprets the

original thesis in a way that Turing never intended, and it is a fallacy to conflate the

two (Goldin and Wegner 2005). When the notion of computation is extended from

functions and algorithms to processes and services, SCT no longer holds.

Outline. The theoretical nature of computing is currently based on what we call

the mathematical worldview. Section ‘‘Two Views of Computer Science’’ discusses

this worldview, contrasting it with the interactive worldview. Algorithms are an old

mathematical concept adopted by the early computer scientists as part of the

mathematical worldview. Section ‘‘The Evolution of Algorithms’’ discusses how the

adoption and the subsequent broadening of the notion of algorithms have led to a

1 We use ‘‘algorithms’’ in their classical sense, as found in Knuth (1968).

The Interactive Nature of Computing 19

123



confusion over the meaning of the Church–Turing Thesis. Section ‘‘New Models of

Computation’’ considers what it means to model computation, and shows how to

extend Turing Machines towards greater expressiveness by injecting interaction into

the computation. Section ‘‘Analysis of the Strong Church–Turing Thesis’’ analyzes

the beliefs that support the Strong Church–Turing Thesis, identifying their flaws.

We conclude that the Strong Church–Turing Thesis is not equivalent to the original

thesis, and therefore cannot be used to refute our claims about interactive

computation. Section ‘‘The Paradigm Shift to Interaction’’ discusses some of the

implications of the paradigm shift to interaction.

Two Views of Computer Science

The theoretical nature of computing is currently based on what we call the
mathematical worldview. We discuss this worldview next, contrasting it with the

interactive worldview.

The Mathematical Worldview

The theory of computation predates the establishment of computer science as a

discipline, having been a part of mathematics before the 1960s. Its founders include

such notable mathematicians as Godel, Kleene, Church, and Turing.2 Mathemati-

cians equate the notion of computability with the computation of functions. Martin

Davis’s 1958 textbook (Davis 1958) reflected this mathematical worldview that all

computation is function-based, and therefore captured by Turing Machines (TMs).

It begins as follows:

‘‘This book is an introduction to the theory of computability and non-

computability, usually referred to as the theory of recursive functions... the

notion of TM has been made central in the development.’’

In particular, this view assumes that all computation is closed. There is no input

or output taking place during the computation; any information needed during the

computation is provided at the outset as part of the input. These assumptions are

embodied by the semantics of TMs.

Mathematical worldview: All computable problems are function-based.

The mathematical worldview was enthusiastically adopted by early leaders of the

computer science community, including Von Neumann, Knuth, Karp, and Rabin.

Mathematics has been used as a foundation of physics and other scientific

disciplines, and it was believed that mathematics could be used as a basis for

computer science. Davis’s book proved very influential, cementing the acceptance

of the mathematical worldview among computer scientists of the 1950s and 1960s.

2 While Turing’s training and original contributions were mathematical, we believe that his later work

classifies him as a computer scientist rather than a mathematician—perhaps the first one.

20 D. Goldin, P. Wegner

123



TMs, which transform input strings to output strings, have served from the onset

as a formal model for function-based computation:

A problem is solvable iff there exists a Turing machine for computing it.

The legitimacy of this claim is based on two premises. The first one is the

Church–Turing Thesis, which equates function-based computation with TMs. The

second one, usually left unstated, is the mathematical worldview—the assumption

that all computable problems are function-based.

The batch-based modus operandi of the original computers in the 1940s and

1950s was compatible with the function-based view of computation, creating no

inconsistency between the theory and the practice of the discipline at that time. The

perceived validity of this claim was further strengthened by the many early attempts

to find models of computation that are more expressive than TMs, for example

extending the number of tapes or reading heads on the machine. All these attempts

failed, because they continued to adhere to the mathematical worldview, and never

considered problems that are not function-based. We return to this issue in section

‘‘Extending Turning Machines.’’

The Interactive Worldview

The mathematical worldview can be contrasted with the interactive worldview,

where computation is viewed as an ongoing process that transforms inputs to

outputs—e.g., control systems, or operating systems. The question ‘‘what do
operating systems compute?’’ has been a conundrum for the adherents of the

mathematical worldview, since these systems never terminate, and therefore never

formally produce an output. Yet it is clear that they do compute, and that their

computation is both useful and important to capture formally.

While the Church–Turing Thesis remains true, the mathematical worldview no

longer reflects the nature of computational problems. An example of such a problem

is driving home from work (Wegner 1997; Eberbach et al. 2004):

Driving home from work: create an automatic car to drive us home from work,

where the locations of both work and home are provided as input parameters.

Input to this problem may include any necessary additional information

(encodable as a finite string), such as a detailed map and a current weather report.

The output of this problem should be two time series: one that shows the position of

the wheel (e.g., in degrees from the vertical) during the drive, and another to show

the pressure on the gas and break pedals during the drive.

Assuming that the driving is to take place in a real-world environment, this

problem is not computable within a function-based computational paradigm.

Consider the input to such a function. It must be detailed enough so the car can

predict the direction and speed of the wind at every moment of the drive, so as to

compensate for it. It should also enable the car to anticipate the location of all

pedestrians, so as to avoid running over them. As we discuss in Eberbach et al.

(2004), this is impossible—there is no computable function that will determine,

The Interactive Nature of Computing 21

123



given some finite amount of a priori information, all the real-world factors that are

necessary to ensure the car’s safe arrival at its destination. An assertion to the

contrary would endow TMs with a power to predict the future that is tantamount to a

resolution of the predestination debate.

However, the problem of driving home from work is computable—by a control

mechanism, as in an robotic car, that continuously receives video input of the road

and actuates the wheel and brakes accordingly. This computation, just as that of

operating systems, is interactive, where input and output happen during the

computation, not before or after it.

The interactive approach to conceputalizing the notion of computation and of

computable problems is distinct from either the theory of computation and the

concurrency theory. It represents a paradigm change to our understanding of what is

computation, and how it should be modeled. This conceptualization of computation

allows, for example, the entanglement of inputs and outputs, where later inputs to

the computation depend on earlier outputs. Such entanglement is impossible in the

mathematical worldview, where all inputs precede computation, and all outputs

follow it.

The driving example represents an empirical proof of the claim that interactive

computation is more expressive than function-based computation, i.e., it can solve a

greater range of problems. However, to accept this claim, one has to broaden one’s

notion of a problem beyond what is prescribed by the mathematical worldview.

Driving home from work, queuing jobs within an operating system, or document

processing, are all legitimate computational problems on par with finding common

divisors or choosing the next move on a chess board.

The Evolution of Algorithms

The notion of an algorithm is a mathematical concept much older than Turing

Machines; perhaps the oldest example is Euclid’s algorithm for finding common

divisors. This concept is part of the mathematical worldview that was adopted by

the early computer scientists. This section discusses how the adoption and the

subsequent broadening of the notion of algorithms have led to a confusion over the

meaning of the Church–Turing Thesis.

The Original Role of Algorithms

Algorithms originated in mathematics as ‘‘recipes’’ for carrying out function-based

computation, that can be followed mechanically. Algorithms capture what it means

for a computation to be effective.

Role of algorithm: Given some finite input x, an algorithm describes the steps

for effectively transforming it to an output y, where y is f(x) for some recursive

function f.

22 D. Goldin, P. Wegner

123



Like mathematical formulae, algorithms tell us how to compute a value; unlike

them, algorithms may involve what we now call loops or branches. Their role

remained unchanged when they were adopted by the early computer scientists in the

1950s, who made the connection between algorithms and Turing Machines,

equating their expressiveness.

TRUE: TMs = algorithms (in the classical, narrow sense)

Knuth’s famous and influential textbook, The Art of Computer Programming,
Vol. 1 (Knuth 1968) popularized the centrality of algorithms in computer science. In

his definition of algorithms, Knuth was consistent with the mathematical function-

based foundations of the theory of computation. He explicitly specified that

algorithms are closed; no new input is accepted once the computation has begun:

‘‘An algorithm has zero or more inputs, i.e., quantities which are given to it

initially before the algorithm begins.’’

Knuth distinguished algorithms from arbitrary computation that may involve I/O.

One example of a problem that is not algorithmic is the following instruction from a

recipe (Knuth 1968): ‘‘toss lightly until the mixture is crumbly.’’3 This problem is

not algorithmic because it is impossible for a computer to know how long to mix;

this may depend on external dynamically changing conditions such as humidity, that

cannot be predicted with certainty ahead of time. In the function-based mathemat-

ical worldview, all inputs must be specified at the start of the computation,

preventing the kind of feedback that would be necessary to determine when it’s time

to stop mixing. The problem of driving home from work is also among those

problems that Knuth meant to exclude.

Knuth’s detailed discussion of algorithmic computation ensured their function-

based behavior and guaranteed their equivalence with TMs:

‘‘There are many other essentially equivalent ways to formulate the concept of

an effective computational method (for example, using TMs).’’ (Knuth 1968)

While there is no agreement on the exact notion of algorithms, Knuth’s

discussion of algorithms remains definitive; in particular, it serves as the basis of the

authors’ understanding of this term.

The notion of an algorithm is inherently informal, since an algorithmic

description is not restricted to any single language or formalism. The first high-

level programming language developed expressly to specify algorithms was

ALGOL (ALGOrithmic Language). Introduced in the late 1950s and refined

through the 1960s, it was the standard for the publication of algorithms. True to

the function-based conceptualization of algorithms, ALGOL provided no

constructs for input and output, considering these operations outside the concern

of algorithms.4

3 Many similar examples can be found in Cleland’s work (such as Cleland 2004).
4 Not surprisingly, this absence hindered the adoption of ALGOL by the industry for commercial

applications.

The Interactive Nature of Computing 23

123



Algorithms Made Central

The 1960s saw a proliferation of undergraduate computer science (CS) programs;

the number of CS programs in the USA increased from 11 in 1964 to 92 in 1968

(ACM Cirriculum 1968). This increase was accompanied by intense activity

towards establishing the legitimacy of this new discipline in the eyes of the

academic community. The Association for Computing Machinery (ACM) played a

central role in this activity. In 1965, it enunciated the justification and description of

CS as a discipline (ACM Report 1965), which served as a basis of its 1968

recommendations for undergraduate CS programs (ACM Curriculum 1968); one of

the authors (Wegner) was among the primary writers of the 1968 report.

ACM’s description of CS (ACM Report 1965) identified effective transformation

of information as a central concern:

‘‘Computer science is concerned with information in much the same sense that

physics is concerned with energy... The computer scientist is interested in

discovering the pragmatic means by which information can be transformed.’’

By viewing algorithms as transformations of input to output, ACM adapted an

algorithmic approach to computation; this is made explicit in the next sentence of

the report:

‘‘This interest leads to inquiry into effective ways to represent information,

effective algorithms to transform information, effective languages with which

to express algorithms...and effective ways to accomplish these at reasonable

cost.’’

Having a central algorithmic concern, analogous to the concern with energy in

physics, helped to establish CS as a legitimate academic discipline on a par with

physics.

Algorithms have remained central to computer science to this day. The

coexistence of the informal (algorithm-based) and the formal (TM-based)

approaches to defining solvable problems persists to this day and can be found in

all modern textbooks on algorithms or computability:

– A problem is solvable if it can be specified by an algorithm.

– A problem is solvable if there exists a Turing Machine for it.

This has proved very convenient for computer scientists, allowing us to describe

algorithmic computation informally using ‘‘pseudocode’’, with the knowledge that

an equivalent Turing Machine can be constructed.

Algorithms Redefined

The 1960s decision by theorists and educators to place algorithms at the center of

CS was clearly reflected in early undergraduate textbooks. However, there was no

explicit standard definition of an algorithm and various textbooks chose to define

this term differently. While some textbooks (such as Knuth 1968) were careful to

24 D. Goldin, P. Wegner

123



explicitly restrict algorithms to those that compute functions and are therefore

TM-equivalent, most theory books left this restriction implied but unstated.

An early example is Hopcroft and Ullman (1969), one of the first textbooks on

the theory of computation (whose later editions are being used to this day):

‘‘A procedure is a finite sequence of instructions that can be mechanically

carried out, such as a computer program... A procedure which always

terminates is called an algorithm.’’

Their discussion of algorithms does not explicitly preclude non-functional

computation such as driving home from work. However, the prohibition against

obtaining inputs dynamically during the computation is implicitly present. Their

examples of various problems make it clear that only function-based computation

was considered. In fact, ALGOL, the language then used for writing algorithmic

programs, did not even offer any constructs for input and output.

By the late 1960s, the high-level programming languages used in practice and

taught in CS programs were no longer bound by the algorithmic restraints of

early ALGOL. In response, contemporary programming textbooks (such as Rice

and Rice 1969) explicitly broadened the notion of algorithms to include non-

functional problems. This approach, reflecting the centrality of algorithms

without restricting them to the computation of functions, is typical of non-theory

textbooks.

On the surface, the definition of an algorithm in Rice and Rice is no different

from Hopcroft and Ullman:

‘‘An algorithm is a recipe, a set of instructions or the specifications of a

process for doing something. That something is usually solving a problem of

some sort.’’

However, their examples of computable problems are no longer function based,

admitting just the kind of computation that Knuth had rejected. Two such examples,

that can supposedly be solved by an algorithm, are making potato vodka and filling

a ditch with sand; driving home from work would fit right in, too.

TRUE: computable problems = algorithms (in the common, broader sense)

The subject of Rice and Rice was programming methodology rather than the

theory of computation, and the mathematical principles that underpin our models of

computation were cast aside for the sake of practicality. Rice and Rice made no

claims of TM-equivalence for their ‘‘algorithms’’. However, the students were not

made aware that this notion of algorithms is different from Knuth’s, and that the set

of problems considered computable had thereby been enlarged.

By pairing a broader, more practical, conceptualization of algorithms (and hence

of computable problems) with theories claiming that every computable problem can

be computed by TMs, the algorithm-focused CS curriculum left students with the

erroneous impression that this broader set of problems could also be solved by TMs.

FALSE: TMs = computable problems

The Interactive Nature of Computing 25

123



Algorithms Today

A recent ACM SIGACT newsletter acknowledges that of all undergraduate CS

subjects, theoretical computer science has changed the least over the decades

(SIGACT News 2004). While the practical computer scientists have long since

followed the lead of Rice and Rice (1969) and broadened the concept of algorithms

beyond the computation of functions, theoretical computer science has retained the

mathematical worldview that frames computation as function-based, and delimits

our notion of a computational problem accordingly. This is true at least at the

undergraduate level, despite advanced complexity theoretic work that ventures

outside this worldview, such as on-line and distributed algorithms, Arthur–Merlin

games, and interactive proofs.

The result is a dichotomy, where the computer science community thinks of

algorithms as synonymous with the general notion of computation (‘‘what

computers do’’) yet at the same time as being equivalent to Turing Machines.

This dichotomy can be found in today’s popular textbooks (such as Sipser 2005).

Their discussion of algorithms is very broad, but the equivalence with TMs is taken

for granted:

‘‘an algorithm is a collection of simple instructions for carrying out some task.

Commonplace in everyday life, algorithms sometimes are called procedures or

recipes... The TM merely serves as a precise model for the definition of

algorithm.’’

While the selection of computational problems in Sipser (2005) is all function-

based, this discussion of algorithms certainly leaves an impression that tasks such as

operating system processes are considered algorithmic. After all, these are tasks that

computers carry out all the time.

This dichotomy is canonized in the Strong Church–Turing Thesis, which can be

found throughout the computing literature, including Sipser (2005):

‘‘A TM can do anything that a computer can do.’’

New Models of Computation

We now consider what it means to model computation, and how to extend Turing

Machines towards greater expressiveness by injecting interaction into the

computation.

Extending Turing Machines

The history of modifying or extending TMs is at least as old as the theory of

computation. By TMs, we mean Turing’s automatic machines as defined in his

original paper (Turing 1936), and all the versions of these machines that are

equivalent to the original. In general, the equivalence of TM versions cannot be

26 D. Goldin, P. Wegner

123



taken for granted. As discussed in section ‘‘Syntax versus Semantics’’, the versions

one obtains by modifying or extending TMs are not TMs, unless and until

equivalence with the original has been proven. For example, Turing’s automatic

machines had a binary alphabet and an infinite tape; the Turing Machine we use

now typically has an arbitrary alphabet and a semi-infinite tape. Before this version

could be called a Turing Machine, a proof was needed of the equivalence of the two

models. Indeed, if only right transitions are allowed in a TM, the resulting model is

not equivalent, having the expressiveness of a finite state automaton (FSA) rather

than a TM.

The FSA example represents a restriction on TM computations. More common

are extensions. All TM extensions that can be found in theory textbooks, such as

increasing the number of tapes or changing the alphabet, are algorithmic. In the case

of algorithmic extensions, the Church–Turing Thesis applies, and it can be taken for

granted that the new model is equivalent to the original. However, as a result of the

Strong Church–Turing Thesis, we have come to assume the equivalence of any TM

extension (algorithmic or not) to the original, and we no longer require (or expect)

formal proofs of this.

To capture the contemporary interactive use of computers, the more recent TM

extensions have tended to be non-algorithmic, with computation that spans multiple

inputs and outputs to the underlying TM. Nowadays we consider non-terminating

interactive computations of Turing Machines, persistent Turing Machines, nets of

Turing Machines, Turing Machines with evolvable architecture, etc., exactly for

reasons of capturing ‘‘all computers’’, or ‘‘all computations’’.

While these extensions usually share TM syntax (machinery), their semantics are

different; for example, in the case of Persistent Turing Machines, it is based on

dynamic input streams and persistence (section ‘‘PTMs: Modeling Sequential

Interaction’’). Out of habit, researchers have continued to assume that these new

machines must be equivalent to the original TM. But in the case of such

non-algorithmic extensions, Turing’s thesis does not automatically apply, and

equivalence can no longer be taken for granted; indeed, it no longer holds.

PTMs: Modeling Sequential Interaction

Wegner has conjectured (Wegner 1997, 1998) that interactive models of compu-

tation are more expressive than ‘‘algorithmic’’ ones such as Turing Machines. In

other words, they are able to solve a larger set of computable problems, or to exhibit

a greater variety of behaviors. It would therefore be interesting to see what minimal

extensions are necessary to Turing Machines to capture the salient aspects of

interactive computing towards proving Wegner’s conjecture. This question served

as a motivation for a new model of computation called Persistent Turing Machines
(PTMs), introduced by one of the authors (Goldin et al. 2004).

PTMs are interaction machines that extend Turing Machine semantics in two

different ways, with dynamic streams and persistence, capturing sequential

interactive computations. A PTM is a nondeterministic 3-tape Turing Machine

(N3TM) with a read-only input tape, a read/write work tape, and a write-only output

The Interactive Nature of Computing 27

123



tape. Its input is a stream of tokens (strings) that are generated dynamically by the

PTM’s environment during the computation.

A PTM computation is an infinite sequence of macrosteps; the ith macrostep

consumes the ith input token ai from the input stream, and produces the ith output

token oi for the output stream. Each macrostep is an N3TM computation consisting

of multiple N3TM transitions (microsteps), just as each input and output token is a

string consisting of multiple characters. The input and output tokens are temporally

interleaved, resulting in the interaction stream {(a1, o1), (a2, o2),}. This stream

represents the observed behavior of the PTM during the computation.

A simple example of a PTM is an answering machine:

Answering Machine: An answering machine AM is a PTM whose work tape

contains a sequence of recorded messages and whose operations are record; play
and erase: The behavior of AM is defined as follows:

– when the input is record Y, and the tape contains X, the output is ok; and the

tape now contains XY;

– when the input is play and the tape contains X, the output is X, and the tape now

contains X;

– when the input is erase and the tape contains X, the output is done and the tape

is now blank (contains an empty string).

For example, given the input stream ½record A; erase; record BC; record D;
play; . . .�; AM generates the output stream ½ok; done; ok; ok; BCD; . . .�; resulting in

the following interaction stream:

½ðrecord A; okÞ; ðerase; doneÞ; ðrecord BC; okÞ; ðrecord D; okÞ; ðplay; BCDÞ; . . .�

Note that both the content of the work tape and the length of input for recorded

messages are unbounded.

The automatic car of section ‘‘The Interactive Worldview’’ serves as another

example of a PTM. Its inputs consist of images of the road from a built-in camera,

coupled with information streaming in from other parts of the car, such as the wheels.

The outputs consist of signals to the steering wheel (how much to turn right or left),

and to the breaks and the gas (how much to speed up or slow down). The car

exemplifies I/O entanglement: what the car ‘‘sees’’ next depends on where it turns now.

PTM computations are persistent in the sense that a notion of ‘‘memory’’ (work-

tape contents) is maintained from one macrostep to the next. Thus the output of each

macrostep oi depends both on the input ai and on the work tape contents at the

beginning of the macrostep. However, this contents is hidden internally, and is not

considered observable. Thus it is not part of interaction streams, which only reflect

input and output (observable) values.5 An analogy is a human whose behavior we

can observe, but whose thoughts and memories are hidden from us. While humans

are not machines, humanoid robots certainly are, and PTMs can model them

analogously to the way they model robotic cars.

5 While this seems like a minor detail, it plays a key role in PTM theory, such as when defining PTM

equivalence or constructing PTM simulations, as in a universal PTM (Goldin et al. 2004).

28 D. Goldin, P. Wegner

123



Expressiveness of Sequential Interaction

Three results concerning the expressiveness of PTMs are discussed next. We leave

out the proofs, which are very technical and are outside the scope of this paper; they

can be found in Goldin et al. (2004).

The first result is that the class of PTMs is isomorphic to interactive transition
systems (ITSs), which are effective transition systems whose actions consist of

input/output pairs—thereby allowing one to view PTMs as ITSs ‘‘in disguise’’. This

result addresses an open question concerning the relative expressive power of

Turing Machines and transition systems. It has been known that transition systems

are capable of simulating Turing Machines. The other direction, namely ‘‘What

extensions are required of Turing Machines so they can simulate transitions

systems?’’, is solved by PTMs.

The second result is the greater expressiveness of PTMs over Amnesic Turing
Machines (ATMs), which are a subclass of PTMs that do not have persistence—in

effect by erasing their work tape. ATMs extend Turing Machines with dynamic

streams but without memory. An example of an ATM is a squaring machine, whose

input and output are streams of numbers; at ith macrostep, if the input number is ki,

the output is its square ki
2.

Persistence extends the effect of inputs. An input token affects the computation

of its corresponding macrostep, including the work tape. The work tape in turn

affects subsequent computation steps. If the work tape were erased, then the input

token could not affect subsequent macrosteps, but only ‘‘its own’’ macrostep. With

persistence, an input token can have impact on all subsequent macrosteps; this

property of PTM computations is known as history dependence. By contrast, ATM

computations exhibit no history dependence; intuitively, an ATM computation is a

series of separate computations of the same TM, reinitializing it before each new

input. The strictly greater expressiveness of PTMs over ATMs also implies that

PTMs are more expressive than Turing Machines, allowing us to formally prove

Wegner’s conjecture.

The third result proves the existence of universal PTMs; analogously to a

universal Turing Machine, a universal PTM can simulate the behavior of any

arbitrary PTM.

Sequential Interaction Thesis

PTMs perform sequential interactive computation, defined as follows:

Sequential Interactive Computation: A sequential interactive computation

continuously interacts with its environment by alternately accepting an input string

and computing the corresponding output string. Each output-string computation

may be both nondeterministic and history-dependent, with the resultant output string

depending not only on the current input string, but also on all previous input strings.

Examples of sequential interactive computation abound, including Java objects,

static C routines, single-user databases, and network protocols. A simulator PTM

The Interactive Nature of Computing 29

123



can be constructed for each of these examples, analogously to the construction of

the universal PTM. The result is a sequential interactive analogue to the Church–

Turing Thesis, stating that PTMs capture all sequential interaction:

Sequential Interaction Thesis: Any sequential interactive computation can be

performed by a Persistent Turing Machine.

This thesis establishes the foundation of the theory of sequential interaction, with

PTMs and ITSs as its alternative canonical models of computation. Since PTMs are

more expressive than amnesic TMs and Turing Machines, the theory of sequential

interaction represents a more powerful problem-solving paradigm than the

traditional theory of computation (TOC), confirming the conjecture that ‘‘interaction

is more powerful than algorithms’’. We also expect that this theory will prove as

robust as TOC, with appropriate analogues to fundamental TOC concepts such as

logic, complexity, and recursive functions.

Analysis of the Strong Church–Turing Thesis

In this section, we analyze the beliefs that support the Strong Church–Turing Thesis,

identifying their flaws. Our goal is to show that the Strong Church–Turing Thesis is

not equivalent to the original thesis, and therefore cannot be used to refute our

claims about interactive computation.

Confusion over Algorithms

The Church–Turing Thesis, developed when Turing visited Church in Princeton in

1937–1938, asserted that Turing Machines and the lambda calculus could compute

all effective (recursive) mathematical functions.

Church–Turing Thesis: Whenever there is an effective method for computing a

mathematical function it can be computed by a Turing machine or by the lambda

calculus.

This thesis identifies the notion of effective computability of functions over

natural numbers (strings) with the computation of Turing Machines. Church and

Turing showed that this notion of effective computability, based on transformations

of inputs to outputs, could also be realized by the Lambda Calculus and by recursive

functions.

The literature is replete with various reinterpretations of CTT, such as the

Physical Church-Turing Thesis (PCT), which extends: the effectiveness of function

computation to the physical realm:

PCT: A function is effective computable by a physical system iff it is Turing

machine computable.

Computer science literature has embraced a different reinterpretation. The

Church–Turing Thesis is viewed by the computer science community as implying

30 D. Goldin, P. Wegner

123



that Turing Machines model all effective computation, rather than just functions.

We call this claim the Strong Church-Turing Thesis:

Strong Church–Turing Thesis: A Turing machine can compute anything that

any computer can compute. It can solve all problems that are expressible as

computations (well beyond computable functions).

While the Church–Turing Thesis is correct, this later version is not equivalent to

it; Turing himself would have denied it. It is not well known that in the same famous

paper where he introduced TMs (calling them automatic machines, or a-machines)

he also introduced choice machines (c-machines), which extend TMs to interaction

by allowing a human operator to make choices during the computation (Turing

1936). It is clear that Turing viewed c-machines as another model of computation

distinct from TMs and not reducible to it.

In fact, the Strong Church–Turing Thesis is incorrect—the function-based

behavior of algorithms does not capture all forms of computation, and Persistent

Turing Machines are provably more expressive than Turing Machines (section

‘‘PTMs: Modeling Sequential Interaction’’). Since this thesis is not equivalent to the

original, a proof of its incorrectness does not challenge the original thesis. However,

the Strong Church–Turing Thesis is still dogmatically accepted by most theoretical

computer scientists as a mathematical principle for computing that underlies

computer science. As Denning recently wrote (Denning 2004), ‘‘we are captured by

a historic tradition that sees programs as mathematical functions’’.

The equivalence of the Strong Church–Turing Thesis to the original is a myth,

whose widespread acceptance rests on the following claims:

Claim 1. All computable problems are expressible by functions from integers to

integers, and therefore captured by Turing Machines.

Claim 2. All computable problems can be described by algorithms.

Claim 3. Algorithms are what computers do.

The first of these claims reflects the mathematical worldview, discussed in

section ‘‘The Mathematical Worldview.’’ It is based on the Church–Turing Thesis,

which equates functions and Turing Machines. The third claim reflects the central

position of algorithms in defining practical computation, discussed in section

‘‘Algorithms Redefined.’’ The second claim ties the first and the third claims

together, creating an appearance of equivalence between Turing Machines and

computers.

As discussed in section ‘‘The Evolution of Algorithms’’, there exist two distinct

interpretations of the notion of algorithms (and correspondingly, of computing

problems). The first is the classical interpretation, which defines algorithms as

function-based transformations of inputs to outputs. The second interpretation is

pragmatic, defining algorithms as abstract descriptions of the behaviors of

programs. The first interpretation of claim 2 is compatible with claim 1, while

the second interpretation is compatible with claim 3; however, these interpretations

of claim 2 are mutually incompatible and cannot coexist. This incompatibility pulls

apart the three claims, bringing down the Strong Church–Turing Thesis.

The Interactive Nature of Computing 31

123



Syntax versus Semantics

As discussed above, the confusion over the notion of algorithms and the coexistence

of two mutually incompatible interpretations played a key role in engendering the

myth of the Strong Church–Turing Thesis. However, other factors also played a

role, by ‘‘corroborating’’ the correctness of this thesis. One of them is the failure to

distinguish between the syntax and the semantics of automata, such as the Turing

Machine (TM).

TM syntax: what does it consist of?

TM semantics: how does it compute?

A TM consists of a finite set of states, a read/write head, a tape, and a control

mechanism for transitioning between states and performing read/write actions on

the tape. At this level, the description of a TM is similar to that of a computer. The

differences, as pointed out in Wegner (1968), are that the computer’s memory is not

infinite, and it is accessed randomly rather than sequentially. But these differences

are relatively minor, and the following claim has been made:

TMs serve as a general model for computers.

This claim, which can be viewed as corroborating the Strong Church–Turing

Thesis, focuses on TM syntax. However, just as for any other class of automata, TMs

are not fully specified until we define what is meant by their computation, i.e., their

semantics. As defined by Turing in 1936, TM semantics prescribe that every

computation starts in an identical configuration (except for the contents of the read/

write tape), and the contents of the tape cannot be modified from the ‘‘outside’’ during

the computation. This can be contrasted with Turing’s alternate model of choice
machines (Turing 1936), which has the same syntax as TMs but different semantics.

Statements about TM expressiveness, such as the Church–Turing Thesis,

fundamentally depend on their semantics. If these semantics were defined

differently, it may (or may not) produce an equivalent machine. Kugel uses the

terms machinery and machines to describe the same distinction between ‘‘what a

machine contains’’ and ‘‘how it is used’’ (Kugel 2002). He points out that if used

differently, the same machinery results in a different machine. An example of a

model that shares TM’s syntax (machinery) but has different semantics are

Persistent Turing Machines; its semantics are based on dynamic streams and

persistence (section ‘‘PTMs: Modeling Sequential Interaction’’).

The computation of early computers could be said to reflect TM semantics.

However, the computation of modern computers is no longer based on the same

semantics. Unlike TMs, new inputs arrive continuously (think of an operating

system, or a document processor such as Word or PowerPoint); the output is also

produced continuously (in case of the document processor, it is the screen display of

the document). There is I/O entanglement, whereby later inputs are affected by

earlier outputs and vise-versa. All this renders a computer’s behavior non-
functional; it no longer computes a function from the input to the output, and TM no

longer serves as an appropriate model for this interactive computational behavior.

32 D. Goldin, P. Wegner

123



The Universal Turing Machine

The Universal Turing Machine is a special TM introduced by Turing in 1936, that

can simulate any other TM. Given the complete description of any TM M and some

input string w, the universal TM U will return the output of M on W:

UðM;wÞ ¼ MðwÞ
This machine served as the inspiration for the notion of general-purpose

computing. Turing himself saw a direct parallel between the capability of a

computer to accept and execute programs, and his notion of a universal machine.

The principle of universality can easily be extended to any other class of

algorithmic machines:

Universality Thesis: Any class of effective devices for computing functions can

be simulated by a TM.

As discussed in section ‘‘Syntax versus Semantics’’, the semantics of a TM only

allow it to simulate devices that compute functions, such as M above. M cannot be a

computer, because a computer’s complete description (including its memory)

changes with every input. After we simulate a computer C on input w1, we obtain in

essence a new computer C0. To continue the simulation on input w2, we need to

simulate C0 rather than C. By contrast, U must start its simulation from the same

configuration for each input.

This inconvenient restriction is absent from real-world simulations, such as when

running an interpreter. The failure to appreciate the distinction between the notion

of simulation as experienced in practice and as prescribed for Turing Machines has

led to the strengthening of the Universality Thesis:

Strong Universality Thesis: Any computer can be simulated by a TM.

The Strong University Thesis has also been used to ‘‘corroborate’’ the Strong

Church–Turing Thesis, but its foundations are equally questionable.

The Strong Church–Turing Thesis Refuted

Earlier, we have discussed the origins for the widespread belief in the Strong

Church–Turing Thesis, having identified three distinct claims that lead to it:

Claim 1. All computable problems are function-based.

Claim 2. All computable problems can be described by an algorithm.

Claim 3. Algorithms are what computers do.

We have also looked at two more claims that have been used to corroborate the

myth of the Strong Church–Turing Thesis

Claim 4. TMs serve as a general model for computers.

Claim 5. TMs can simulate any computer.

The Interactive Nature of Computing 33

123



Each of these claims contains a grain of truth. By reformulating them to bring out

the hidden assumptions, misunderstandings are removed. The following versions of

the above statements are correct:

New claim 1. All algorithmic problems are function-based.

New claim 2. All function-based problems can be described by an algorithm.

New claim 3. Algorithms are what early computers used to do.

New claim 4. TMs serve as a general model for early computers.

New claim 5. TMs can simulate any algorithmic computing device.

Furthermore, the following claim is also correct:

Claim 6. TMs cannot compute all problems, nor can they do everything that real

computers can do.

This last claim, while incompatible with original five claims, is perfectly

consistent with their corrected versions. By contradicting the Strong Church–Turing

Thesis, it legitimizes the search for models of computation that are more expressive

than TMs, without challenging the original Church–Turing Thesis.

The Paradigm Shift to Interaction

This section discusses some of the implications of the paradigm shift to interaction.

Expressiveness of Interaction

Sequential interaction is only one form of interactive computation. The paper

‘‘Interactive Foundations of Computing’’ by one of the authors (Wegner 1998)

explores more general notions of interaction, including analog, real-time, and multi-

agent interaction. It conjectures that these forms of interaction are more expressive

than sequential interaction.

It shows that the semantics of streams cannot be expressed by that of strings, that

interaction includes nonfunctional non-algorithmic behavior, that persistent agents

are not algorithmically describable, that extending algorithms to interaction

transforms ‘‘dumb’’ to ‘‘smart’’ problem-solving behaviors. It furthermore shows

that increased expressive power may in many cases decrease or eliminate

formalizability—the ability to state a problem (or describe a computing system)

formally and completely.

Dijkstra’s ‘‘GOTO considered harmful’’ article (Dijkstra 1968) suggested

eliminating the GOTO statement because its expressiveness decreased formaliz-

ability. Interaction likewise increases expressiveness at the expense of

formalizability, and could therefore be considered harmful in the Dijkstra sense.

We believe that expressiveness should be encouraged and that neither interaction

nor GOTO statements should be considered harmful because they decrease

formalizability.

34 D. Goldin, P. Wegner

123



Interactive systems are incomplete in the sense that they cannot be modeled by

sound and complete first-order logics. Incompleteness contributes to expressiveness

at the expense of formalizability, supporting non-formalizable error checking,

emergent behavior, open systems, object-oriented programming, and robustness.

Programming in the large produces non-formal interactive behaviors that are more

expressive than algorithmic programming in the small.

The paradigm shift from algorithms to interaction suggests that mathematical

formalizability must necessarily be restricted in realizing important goals of

expressiveness. Interactive models extend formal rationalist systems that limit

expressiveness to non-formal empiricist systems that are more expressive (Wegner

1999). Thus rationalist mathematical arguments that formalizability is an essential

tool of problem solving must be eliminated in achieving the broader goal of

empiricist interactive problem solving.

Interaction and Concurrency

Interactive computation is inherently concurrent, where the computation of

interacting agents or processes proceeds in parallel. Hoare, Milner and other

founders of concurrency theory have long realized that TMs do not model all of

computation (Wegner and Goldin 2003). However, when their theory of concurrent

systems was first developed in the late 1970s, it was premature to openly challenge

TMs as a complete model of computation. Their theory positions interaction as

orthogonal to computation, rather than a part of it. By separating interaction from

computation, the question whether the models for CCS and the p-calculus went

beyond Turing Machines and algorithms was avoided.

The resulting divide between the theory of computation and concurrency theory

runs very deep. The theory of computation views computation as a closed-box
transformation of inputs to outputs, completely captured by Turing Machines. By

contrast, concurrency theory focuses on the communication aspect of computing

systems, which is not captured by Turing Machines—referring both to the

communication between computing components in a system, and the communica-

tion between the computing system and its environment. As a result of this division

of labor, there has been little in common between these fields and their communities

of researchers. According to Papadimitriou (1995), such a disconnect within the

theory community is a sign of a crisis and a need for a Kuhnian paradigm shift in

our discipline.

In the last three decades, computing technology has shifted from mainframes and

microstations to networked embedded and mobile devices, with the corresponding

shift in applications from number crunching and data processing to the Internet and

ubiquitous computing. We believe it is no longer premature to encompass

interaction as part of computation. Our approach is distinct from both concurrency

theory and the theory of computation.

Persistent Turing Machines (PTMs, section ‘‘PTM’s Modeling Sequential

Interaction’’) are interactive machines that begin to bridge the gap between the

two fields. PTMs offer a model based on the methods of the theory of computation,

The Interactive Nature of Computing 35

123



that captures sequential interaction, which is a limited form of concurrency. They

can also be viewed as interactive transition systems, with corresponding notions of

observational equivalence. Furthermore, they have been shown to be more

expressive than Turing Machines. It is hoped that PTMs will contribute to a new

theory of interactive computation which will bridge the current theories of

computation and concurrency.

Conclusion

Throughout the years, researchers in theoretical computer science have found need

for interactive models of computation. In addition to the work in concurrency

(section ‘‘Interaction and Concurrency’’), models from the 1970s and 1980s include

on-line TMs for on-line algorithms (Fischer and Stockmeyer 1974), Input/Output

automata for distributed algorithms (Lynch and Tuttle 1989), and Interactive TMs

for interactive proofs (Goldwasser et al. 1989). However, the issue of the greater

expressiveness of interactive models over TMs was not raised until the mid-1990s,

when the model of interaction machines was first proposed by one of the authors

(Wegner 1997).

The theoretical framework for PTMs, sequential interaction machines that are a

persistent stream-based extension to TMs, was completed by one of the authors in

Goldin et al. (2004); it is discussed in section ‘‘PTM’s Modeling Sequential

Interaction.’’ Van Leeuwen, a Dutch expert on the theory of computation, proposed

an alternate extension in van Leeuwen and Wiedermann (2000). In addition to

interaction, other ways to extend computation beyond Turing Machines have

been considered. Hypercomputation is the computation of functions that are not

Turing-computable; a survey of hypercomputation can be found in Copeland

(2002).

The field of artificial intelligence (AI) has perhaps gone the furthest in explicitly

recognizing the expressiveness gains of moving beyond algorithms. In the early

1990s, Rodney Brooks convincingly argued against the algorithmic approach of

‘‘good old-fashioned AI’’, positioning interaction as a prerequisite for intelligent

system behavior (Brooks 1991). This argument has been adopted by the mainstream

AI community, whose leading textbooks recognize that interactive agents are a

stronger model of intelligent behaviors than simple input/output functions (Russell

and Norveig 1994).

Interaction represents a paradigm shift that changes our understanding of what is

computation and how it is modeled. We recognize that our proposed paradigm shift

may be questioned by proponents of the old paradigm, on the basis that Turing

Machines in fact express interactive as well as other computation and that the well

known computer theorists of the 1960s and 1970s have confirmed the correctness of

the old paradigm. These claims constitute what we call the Strong Church–Turing
Thesis.

We have shown that the Strong Church-Turing Thesis departs from the original

Church–Turing Thesis and is incorrect in its claims. Turing’s model, which only

captured the closed-box computation of functions and algorithms, never claimed to

36 D. Goldin, P. Wegner

123



model all computation, which includes non-algorithmic processes that interact

during computation. The Strong Church–Turing Thesis has been a myth that

negated Turing’s fundamental beliefs when it was formulated 10 years after his

death.

It is natural that any paradigm shift will be questioned and that arguments for a

new paradigm must be verified and widely tested before it can be accepted by a

broader community. We hope that this paper contributes to the understanding of the

origins of the pervasive myth of the Strong Church–Turing Thesis, and to the

acceptance of the interaction paradigm as an extension and replacement of the

Strong Church–Turing Thesis by a broader unifying principle for computation and

problem solving. Interaction provides a new conceptualization of the nature of

computing that is more appropriate for modeling the services provided by the

computing technology of the new millennium.

Acknowledgements We sincerely thank the anonymous reviewers for their comments, which were very

helpful in revising this paper.

References

ACM Curriculum Committee on Computer Science. (1965). An undergraduate program in computer

science—preliminary recommendations. Communications of the ACM, 8(9), 543–552.

ACM Curriculum Committee on Computer Science. (1969). Curriculum 68: Recommendations for

academic programs in computer science. Communications of the ACM, 11(3), 151–197.

Brooks, R. (1991). Intelligence without reason. Technical Report 1293. MIT Artificial Intelligence Lab.

Cambridge, MA.

Cleland, E. C. (2004). The concept of computability. Theoretical Computer Science, 317(1–3), 209–225.

Cleland, E. C. (2007). In A. Olszewski (Eds.), The Church–Turing Thesis: A last vestige of a failed
mathematical program (pp. 119–149).

Copeland, B. J. (1997). The Church–Turing Thesis. Stanford Encyclopedia of Philosophy (substantially

revised in 2005).

Copeland, B. J. (2002). Hypercomputation. Minds and Machines, 12(4), 461–502.

Davis, M. (1958). Computability & unsolvability. McGraw-Hill.

Denning, P. (2004). The field of programmers myth. Communications of the ACM, 47(7).

Dijkstra, E. W. (1968). Go to statement considered harmful. Communications of the ACM, 11(3),

147–148.

Eberbach, E., Goldin, D., & Wegner, P. (2004). Turing’s ideas and models of computation. In C.

Teuscher (Ed.), Alan turing: Life and legacy of a great thinker. Springer.

Fischer, M. J., & Stockmeyer, L. J. (1974). Fast on-line integer multiplication. Journal of Computer and
System Sciences, 9(3), 317–331.

Fitz, H. (2007). In A. Olszewski, et al. (Eds.), Church’s thesis and physical computation (pp. 175–219).

Goldin, D., Smolka, S., Attie, P., & Sonderegger, E. (2004). Turing Machines, transition systems, and

interaction. Information & Computation Journal, 194(2), 101–128.

Goldin, D., & Wegner, P. (2005). The Church–Turing Thesis: Breaking the myth. LNCS 3526 (pp. 152–

168). Springer.

Goldwasser, S., Micali, S., & Rackoff, C. (1989). The knowledge complexity of interactive proof

systems. SIAM Journal of Computing, 18(1), 186–208.

Hopcroft, J. E., & Ullman, J. D. (1969). Formal languages and their relation to automata. Addison-

Wesley.

Knuth, D. (1968). The art of computer programming, Vol. 1: Fundamental algorithms. Addison-Wesley.

Kugel, P. (2002). Computing machines can’t be intelligent (...and Turing said so). Minds and Machines,

12(4), 563–579.

The Interactive Nature of Computing 37

123



Lynch, N. A., & Tuttle M. R. (1989). An introduction to input/output automata. CWI Quarterly, 2(3),

219–246. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

Olszewski, A., & Wolenski, J., et. al. (Eds.) (2006). Church’s thesis after 70 years. Ontos-Verlag.

Papadimitriou, C. H. (1995). Database metatheory: Asking the big queries. In Proceedings of the 14th
ACM Symposium on Principles of Database Systems, San Jose, CA.

Rice, J. K., & Rice J. R. (1969). Introduction to computer science: Problems, algorithms, languages,
information and computers. USA: Holt, Rinehart and Winston.

Russell, S., & Norveig, P. (1994). Artificial intelligence: A modern approach. Addison-Wesley.

SIGACT News. (2004). ACM Press, p. 49.

Sieg, W. (2005). Computability and discrete dynamical systems. LNCS 3526 (pp. 440–440). Springer.

Sipser, M. (2005). Introduction to the theory of computation (2nd ed.). PWS Publishing Company.

Turing, A. (1936). On computable numbers, with an application to the Entscheidungs problem.

Proceedings of the London Mathematical Society, 42(2), 230–265; A correction, ibid, 43, 544–546.

van Leeuwen, J., & Wiedermann, J. (2000). The turing machine paradigm in contemporary computing. In

B. Enquist & W. Schmidt (Eds.), Mathematics unlimited—2001 and beyond. LNCS. Springer-

Verlag.

Weger, P. (1968). Programming languages, information structures and machine organization. McGraw-

Hill.

Wegner, P. (1997). Why interaction is more powerful than algorithms. Communications of the ACM, 40,

80–91.

Wegner, P. (1998). Interactive foundations of computing. Theoretical Computer Science, 19(2), 315–351.

Wegner, P. (1999). Towards empirical computer science. The Monist, 82(1), 58–108.

Wegner, P., & Goldin, D. (2003). Computation beyond Turing Machines. Communications of the ACM,

46, 100–102.

38 D. Goldin, P. Wegner

123




