Monografias.com > Uncategorized
Descargar Imprimir Comentar Ver trabajos relacionados

Prueba de hipótesis y SPC control estadístico del proceso (página 2)



Partes: 1, 2

i
las propuestas se entregaran al cliente
dentro de 5 días contra entrega mayor
de 5 días
Error Tipo I:

Error Tipo II:
Ha:
Ho: µdentro 5 días = µ> 5 días
µdentro 5 días µ> 5 días
Preguntas del concursante equipo

Pregunta 1: ¿Cuándo ocurre el error Tipo I?

Pregunta 2: ¿Cuándo ocurre el error Tipo II?

Ocurre cuando usted decide que hay
diferencia en la proporción de ganadas
cuando la verdad es que no hay diferencia

Ocurre cuando usted decide que no hay
diferencia en la proporción de ganadas
cuando la verdad es que si hay diferencia

12

Monografias.com

¿Ocurrió por casualidad
esta relación de X y Y
que observe?
Su decisión
“No rechazar Ho”
Ho Verdadera

La
verdad

Ho Falsa
Rechazar Ho
¿Por que es necesaria esa cosa de la Prueba de Hipótesis?

Todo lo que siempre fue…
Todo lo que siempre será…
La verdad

Cuando estamos
buscando X’s
importantes, no sabemos
si son importantes o no
Seleccionamos una
muestra y tomamos
la decisión. Dado
que no sabemos la
verdad, existe un
riesgo en esta
decisión
13

Monografias.com

a
es el “ Valor P ” Critico !!!
Nivel de Significancia (a )

Generalmente:

• Nos gustaría que hubiera menos del 10% de probabilidad de
que estas observaciones hubieran ocurrido al azar (a = .10).

• Cinco por ciento es mucho más confortable (a = .05).

• Con uno por ciento, uno se siente muy bien (a = .01).

• Este nivel de alfa se basa en nuestro supuesto de “no existe
diferencia” y en alguna distribución de referencia.

• Pero, depende de intereses y consecuencias
14

Monografias.com

Después de recolectados los datos, calculamos una prueba
estadística

El “valor de p” es la suerte, la probabilidad de que los resultados
ocurran cuando Ho es verdadera:
Si Ho es verdadera (no hay diferencia) entonces Minitab calcula un
“valor p” alto.
Si Ho es falsa (si hay diferencia), entonces Minitab calcula un “valor p”
pequeño

El valor p está basado en la prueba estadística calculada de sus
datos en comparación con una distribución de referencia actual o
supuesta (normal, distribución t, chi cuadrada, distribución f, etc.).
Los valores de p tienen mas significado que un simple punto de corte.
Valor de p grande

Ho se acepta
No hubo cambios en el
proceso

Si p es alta, la X no aplica!
Valor p pequeño

Ho se rechaza
El proceso si cambió

¡Si p es baja, la X pasa!
15

Monografias.com

Ho=µ maquina
= µ20
Pruebas de Hipótesis

Ejemplo:

Los siguientes datos representan un conjunto de 10 muestras tomadas de 1
Maquina haciendo la misma parte. La especificacion para la
Longitud es de 20 mm. La hipotesis nula Ho dice que si cumple con la espe-
cificacion, y la alternativa dice que es diferente a 20mm.

Donde en representacion matematica es:
Debemos realizar el estudio de prueba de hipotesis para saber la verdad.

(Ver pasos siguientes para determinar la hipotesis Ho).

16
maquina
Ho:µ
? µ20

Monografias.com

Paso 1
Paso 2
Pruebas de Hipótesis
17
Conclusión: Si el valor de P>.05 consideramos que Ho es verdadera y Ha se rehaza.

Monografias.com

Pruebas de Hipótesis

Paso 3
18

Monografias.com

Pruebas de Hipótesis
Ejemplo 2

Durante una auditoria al sistema de calidad el auditado dijo que la empresa estaba contestando las acciones
correctivas de clientes en un periodo =< 30 dias, sin embargo el auditor dijo que el periodo en responder era
>30 dias. Para lo cual se revisaron los periodos de las ultimas 15 quejas contestadas.
Ho=µ periodo de respuesta
= 30
1
2
3
19

Monografias.com

Pruebas de Hipótesis
Conclusion: Debido a que P>.05 Ha se rechaza, y por lo tanto Ho se considera verdadera.
20

Monografias.com

SPC (Control
Estadístico del
Proceso)

Monografias.com

SPC

E(S)= “Estadístico” La aplicación de técnicas estadísticas (matemáticas) para medir y analizar la variación o cambios
en los procesos a través del uso de números y datos.

P = “Proceso” Cualquier combinación de máquinas, herramientas, métodos, materiales y/o personal empleado para
realizar táreas específicas en un producto o servicio. Algunos procesos son de manufactura, algunos son procesos
de servicio, mientras que otros son operaciones de soporte comunes a ambos

C = “Control” Controlando un proceso usando el ciclo de retroalimentación a través del cual medimos el desempeño
real, lo comparamos con un estándar y actuamos sobre la diferencia o el cambio. Mientras más pronto
respondamos al cambio respecto del estándar, más uniforme será la calidad en el producto o servicio.

SPC: Es un método eficiente de recolección y análisis de datos. Se puede aplicar a cualquier cosa expresada en
números. Su aplicación va más allá de manufactura, incluyendo compras, control de producción, personal,
contabilidad, ventas, etc.
1

Monografias.com

SPC

¿Qué es una Gráfica de Control?

Es la representación gráfica de una característica de un proceso.
Representa a un proceso mostrando si solo están presentes causas
comunes de variación.
Le dice si algo está cambiando en su proceso y en que momento está
sucediendo tal cambio.
No le dice que está causando el cambio y si este es “bueno” o “malo”.
2

Monografias.com

SampleMean
Media
20
0

Límite de Control
Inferior
615
605

595

585
10

Sample Number
X-bar Chart for KPOV
UCL=613.6
X=599.1

LCL=584.6
Superior
SPC
Componentes de una Gráfica de Control

Límite de Control
3

Monografias.com


SPC

Aplicaciones de Graficas de Control
Asisten al determinar si un proceso ha estado operando dentro de control estadístico.
Separan las ‘causas comunes’ de variación de las ‘causas especiales’ de variación.
Ayudan a lograr y mantener control estadístico.

Beneficios de los Sistemas de Gráficas de Control

Técnica comprobada para mejorar la productividad

Efectiva para prevenir defectos

Evita ajustes innecesarios al proceso

Proporciona información de diagnóstico

Proporciona información acerca de la capacidad del proceso
4

Monografias.com

SPC

Causas Comunes vs. Causas Especiales de Variación

Por qué invertir tiempo identificando si la variación en un proceso es debida a causas
comunes o especiales?

Prueba para detectar causas especiales…
1)

2)
Recolecte, grafique, y clasifique cuando menos 30 datos y asegurese de que pasan las pruebas
de normalidad y calcule los límites de control. Típicamente, esto incluye calcular la media, la
desviación estándar, y entonces ir “arriba y abajo” 3 desviaciones estándar de la media.

Aplique las siguientes pruebas: (si alguna pasa, la variación se dice que es causa especial por
naturaleza)
2.1) Cualquier punto que caiga fuera de los límites de control.

2.2) 7 puntos consecutivamente incrementando o decreciendo.
2.3) 7 puntos consecutivos en un lado de la media (no la meta).
2.4) 14 puntos consecutivos en forma de “serrucho”.
5

Monografias.com

1)

2)

3)
SPC

Causas Comunes vs. Causas Especiales de Variación

Tres estrategias para reducir las causas comunes de variación…

Estratificación – examinando las diferentes características respecto la salida del proceso,
tales como que día de la semana ocurrió la variación más alta o cual estilo/parte generó la
mayor variación. Típicamente, las gráficas de Pareto son muy útiles cuando se estratifican
los datos

Disgregación – dividir un proceso en sus componentes y estudiar la variación en cada paso
del proceso. Se relaciona muy seguido con estudios de capacidad y de rendimiento. Los
Diagramas de Flujo, los histogramas, y las gráficas de pareto son muy útiles al desintegrar
los datos.

Experimentación – cambiando algunos factores en diferentes niveles y analizando los
resultados y los efectos. La Experimentación puede resultar costosa y lo común es que se
intente únicamente después de haber hecho la estratificación y/o la disgregación.

6

Monografias.com

20
10
0
UCL

LCL
20
10
0
SPC
Interpretando Gráficos

UCL

LCL
ObservationNumber

Patrón Cíclico:
Se observan ciclos repetidos en la gráfica. Esta
configuración puede ser el resultado de un
cambio sistemático como temperatura, fatiga
del operador, rotación regular de operadores
y/o máquinas, fluctuaciones de voltaje o
presión, etc…
ObservationNumber

Mezcla:
Se observa que la mayoría de los puntos tienden a caer muy
cerca de los límites de control, y relativamente pocos cerca
de la línea central. Una condición de mezcla la generan dos o
más distribuciones que se traslapan generando la salida del
proceso. La severidad de este
modelo depende de qué tanto se traslapen las distribuciones.
Algunas veces la mezcla es el resultado de un “sobre-
control”, donde los operadores hacen demasiados ajustes al
proceso muy frecuentemente respondiendo a la variación
normal en lugar de reaccionar a las causas asignables
unicamente.
7

Monografias.com

SampleMean
SampleMean
SampleMean
5
0
25
25
20
20
5
0
75
75

70
70

65
65
10 15
10 15
SampleNumber
SampleNumber
UCL=77.20
UCL=77.20

X=70.91
X=70.91

LCL=64.62
LCL=64.62
25
20
15
10
5
0
80
70

60

50
SampleNumber
UCL=77.27
X=70.98

LCL=64.70
Variación Controlada

X-Bar Chart for Process A
Variación No Controlada

X-Bar Chart for Process B
Causas Especiales
SPC
8

Monografias.com

20
0
10
Observation Number
UCL

LCL
Cambios en el Nivel del
proceso:
El promedio del proceso cambia a
un nuevo nivel. Estos cambios
resultan por la introducción
de algo nuevo: operadores,
materiales, métodos, máquinas,
etc. También puede ser un
cambio en los métodos de
inspección o cambio de estándares
por mejoras al proceso.
15
0
5 10
Observation Number
SPC

Interpretando Gráficos

UCL

LCL
Tendencia:
Movimiento continuo en una dirección.
Las tendencias son ocasionadas
usualmente
por el desgaste gradual de una herramienta
o el deterioro de algún otro componente
crítico del proceso. Las tendencias pueden
resultar también por las influencias de la
estación del año, tales como temperatura.
9

Monografias.com

SPC

Interpretando Gráficos
20
10
0
UCL

LCL
ObservationNumber

Estratificación:
Los puntos graficados tienen la tendencia a
agruparse cerca de la línea central.
Una causa potencial de la estratificación es
el cálculo incorrecto de los límites
de control. También puede ser que el proceso
ha mejorado y su distribución ya
es más angosta. De cualquier forma, se
deben recalcular los límites de control.
10

Monografias.com

SPC
Gráficas de Control para Datos Variables
X-barra


Mide el objetivo o el centro del proceso
Verifica el cambio en la Media de la variable a través del tiempo
Individuales


Similar a la X-barra
Grafica puntos individuales en lugar de la Media
Mediana


Similar a la X-barra
Grafica todos los puntos en la muestra y el punto de en medio se encierra en un círculo
Rango



Se usa con la gráfica X-barra
Verifica la variabilidad del proceso a través del tiempo
Mide la ganancia o pérdida de uniformidad
Sigma


Similar a la gráfica de Rango
Usa la estimación de Sigma de la muestra
Rango Móvil



Similar a la gráfica de Rango
Se grafica un rango nuevo con cada punto consecutivo
Se usa con la gráfica individual
11

Monografias.com

Abra el archivo:
Individ.mtw
Stat > Control Charts > I-MR
Variable = x1
SPC
Ejercicio en Minitab – Individuales
12

Monografias.com

Individuals
MovingRange
20
10
11
10
9
8
7
6
5
Observation0
3

2

1

0
UCL=10.53

MU=7.880

LCL=5.234
UCL=3.250

R=0.9947

LCL=0.000
SPC
Ejercicio en Minitab – Individuales

Iand MR Chart for: x1
13

Monografias.com

SPC
Ejercicio en Minitab – Xbar-R
Abra: Xbar.mtw

Stat > Control Charts > Xbar-R
Variable = variable Subgroup = subgroup
14

Monografias.com

Means
Ranges
20
10
9.5

8.5

7.5

6.5
Subgroup 0
5
4
3
2
1
0
UCL=9.353

MU=7.967

LCL=6.581
UCL=5.082

R=2.403

LCL=0.000
SPC
Ejercicio en Minitab – Xbar-R

Xbar and R Chart for : variable
15

Monografias.com

SPC
Graficas de Control de Atributos

Están basadas en decisiones de acepto/no-acepto.
Se pueden aplicar en casi cualquier operación donde se recolectan datos.
Se utilizan en características de calidad que no pueden ser medidas o
que son costosas o difíciles de medir.
A diferencia de las gráficas de control por variables, las gráficas de
atributos se pueden establecer para una característica de calidad o para
muchas.

Un defectuoso es una unidad en una muestra que tiene una o más no-
conformancía (s) respecto al criterio especificado.

Un defecto es cada no-conformancia respecto al criterio de aceptación
especificado.
16

Monografias.com

SPC
Tipos de Graficas de control de Atributos

Defectuoso


np – número de unidades no-conformantes
p – proporción de unidades no-conformantes
Defectos


c – número de defectos
u – proporción de defectos
17

Monografias.com

SPC
Ejercicio en Minitab – Grafica NP

Abra el archivo: npchart.mtw
Stat > Control Charts > NP
Variable = Número Subgrupo = 62
18

Monografias.com

SampleCount
25
20
15
10
5
0
10
5

0
Sample Number
SPC
Ejercicio en Minitab – Grafica NP

NP Chart for Number
UCL=9.870
NP=4.040

LCL=0.000
19

Monografias.com

SPC
Ejercicio en Minitab – Grafica C

Abrir Cchart.mtw
Stat > Control Charts > C

Variable = Número
20

Monografias.com

SampleCount
25
20
15
10
5
0
20

10

0
Sample Number
SPC
Ejercicio en Minitab – Grafica C

C Chart for num ber
UCL=15.81

C=7.560

LCL=0.000
21

Monografias.com

BIBLIOGRAFIA
Libro: Implementing Six Sigma

Autor: Forrest W. Greyfogle III
Editorial: John Willey & Soons, Inc.
Libro: Statistical Quality Control Hand Book AT & T
Autor: D. W. Thomas Chairman

Editorial:Western Electric Co. inc.

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Categorias
Newsletter