Siguiendo con el criterio de bloques, el diseño factorial de Cuadrado Latino o de doble sistema de bloques controla dos fuentes de variación extrañas, aunque sólo se realiza una parte del total de combinaciones. ..//..
El diseño factorial jerárquico o anidado requiere la manipulación experimental de la variable y, al mismo tiempo, la anidación (o inclusión) de una variable dentro de las combinaciones de tratamientos de los factores. ..//..
Por último, el diseño factorial de medidas repetidas incorpora la técnica intra-sujeto; es decir, el sujeto actúa de control propio y recibe todas las combinaciones de tratamiento generados por la estructura factorial.
Criterios Diseño
Efectos factoriales estimables
1. Efectos simples
2. Efectos principales
3. Efectos secundarios
Efectos factoriales simples
Es posible definir el efecto factorial simple como el efecto puntual de una variable independiente o factor para cada valor de la otra.
Efectos factoriales principales
Los efectos factoriales principales, a diferencia de los simples, son el impacto global de cada factor considerado de forma independiente, es decir, el efecto global de un factor se deriva del promedio de los dos efectos simples.
Efectos factoriales secundarios
El efecto secundario o de interacción se define por la relación entre los factores o variables independientes, es decir, el efecto cruzado.
Diseño factorial al azar 2×2
Estructura del diseño
Combinación de tratamientos por grupo o casilla
Diseño factorial 2×2
A1B1 A1B2
A2B1 A2B2
Formato del diseño factorial completamente al azar
Sub
s
e
l
e
c
c M
i
P ó
n
Asignación al azar
S1 S1 S1 S1
Sn1 Sn2 Sn3 Sn4
V.E. Z1 Z2 Z3 Z4
V.I. A1B1 A1B2 A2B1 A2B2
Caso paramétrico. Ejemplo 1
Se pretende probar, en una situación de aprendizaje discriminante animal, si la magnitud del incentivo (variable incentivo) actúa según el aprendizaje sea simple o complejo (variable dificultad de aprendizaje o variable tarea). En esta hipótesis se afirma que a mayor incentivo, más acusada es la diferencia entre las dos tareas (simple o compleja) ..//..
Para ello, se registra la cantidad de discriminaciones correctas (variable dependiente) en función de un criterio general de aprendizaje, que asume como suficientes 15 ensayos. Se toma, como medida de la variable dependiente o de respuesta, la cantidad de respuestas correctas, para un máximo de 15, bajo el supuesto de que cada discriminación correcta tiene la misma dificultad de aprendizaje. ..//..
Para probar la hipótesis propuesta se asignan 32 sujetos, de una muestra experimental, a las combinaciones de tratamientos o casillas (ocho sujetos por casilla), de forma totalmente aleatoria.
Modelo de prueba de hipótesis
Paso 1. Según la estructura del diseño son estimables tres efectos. Por esa razón, se plantean tres hipótesis de nulidad relativas a la variable A, variable B e interacción:
H0: a1 = a2 = 0
H0: ß1 = ß2 = 0
H0: (aß)11 = (aß)12 = (aß)21 = (aß)22 = 0
Paso 2. Por hipótesis experimental, se espera que los efectos principales y el de la interacción sean significativos. Estas hipótesis se representan, al nivel estadístico, por
H1: a1 ? a2, o no todas las a son cero
H1: ß1 ? ß2, o no todas las ß son cero
H1: (aß)11 ? (aß)12 ? (aß)21 ? (aß)22, o no todas las aß son cero.
Paso 3. El estadístico de la prueba es la F de Snedecor, con un a de 0.05, para las tres hipótesis de nulidad. El tamaño de la muestra experimental es N = 32 y el de las submuestras n = 8.
Paso 4. Cálculo del valor empírico de las razones F. Para ello, se toma la matriz de datos del experimento.
Matriz de datos del diseño
(Gp:) 60
7.5
(Gp:) 70
8.75
(Gp:) 27
3.375
(Gp:) 52
6.5
(Gp:) 8
6
9
9
8
7
7
6
(Gp:) 7
9
10
8
10
9
10
7
(Gp:) 4
3
4
5
2
3
4
2
(Gp:) 10
9
4
8
8
4
3
6
(Gp:) A2B2
(Gp:) A2B1
(Gp:) A1B2
(Gp:) A1B1
(Gp:) DISEÑO FACTORIAL 2X2
Totales:
Medias:
209
6.53
ANOVA factorial
Modelo estructural del ANOVA:
Diseño factorial 2X2
Especificación del modelo
Yijk = la puntuación del i sujeto bajo la combinación
del j valor del factor A y el k valor del factor B.
µ = la media común a todos los datos del
experimento.
aj = el efecto o impacto del j nivel de la variable de
tratamiento A.
ßk = efecto del k valor de la variable de tratamiento B.
(aß)jk = efecto de la interacción entre el j valor de
A y el k valor de B.
eijk = error experimental o efecto aleatorio de
muestreo.
Descomposición polietápica de las Sumas de cuadrados
SCA
SCentre-grupos SCB
SCtotal SCAB
SCintra-grupos SCS/AB
Cuadro resumen del ANOVA primera etapa: Diseño factorial 2X2
(Gp:) F0.95(3/28) = 2.95
(Gp:)
(Gp:) abn-1=31
(Gp:) 203.97
(Gp:) Total (T)
(Gp:) < 0.05
(Gp:) 15.28
(Gp:) 42.19
2.76
(Gp:) ab-1=3
ab(n-1)=28
(Gp:) 126.59
77.38
(Gp:) Entre G
Intra G (E)
(Gp:) p
(Gp:) F
(Gp:) CM
(Gp:) g.l.
(Gp:) SC
(Gp:) F.V.
Inferencia del primer análisis
Del primer análisis se concluye que los grupos de tratamiento o experimentales difieren significativamente entre sí; la probabilidad de que un valor F de 15.28 ocurra al azar es menor que el riesgo asumido (a = 0.05)
..//..
En consecuencia, se procede a determinar las causas de esa significación. Nótese que este análisis no obedece a ningún propósito de investigación, ya que sólo sirve para detectar si, en términos globales, hay o no diferencia entre los grupos. De hecho, es como si se hubiera aplicado un modelo uni-factorial de la variancia.
Gráfico de interacción
Ventajas del diseño factorial
Se ha descrito, a lo largo de ese tema, los conceptos básicos del diseño factorial o estructura donde se manipulan, dentro de una misma situación experimental, dos o más variables independientes (o factores). En aras a una mejor exposición del modelo se ha descrito, básicamente, el diseño bifactorial a dos niveles, dentro del contexto de grupos completamente al azar. ..//..
La disposición bifactorial aporta información no sólo de cada factor (efectos principales), sino de su acción combinada (efecto de interacción o efecto secundario). De esta forma, con la misma cantidad de sujetos requerida para experimentos de una sola variable independiente o factor, el investigador puede estudiar simultáneamente la acción de dos o más variables manipuladas. ..//..
Ello supone un enorme ahorro de tiempo y esfuerzo. Si se tiene en cuenta la posibilidad de analizar la acción conjunta o cruzada de las variables, se concluye que el diseño factorial es una de las mejores herramientas de trabajo del ámbito psicológico, puesto que la conducta es función de muchos factores que actúan simultáneamente sobre el individuo. ..//..
Formato del diseño factorial 2 x 2 de bloques
(Gp:) Bloque 1
(Gp:) Bloque 2
(Gp:) Bloque k
(Gp:)
.
.
(Gp:) A1B1
(Gp:) A2B1
(Gp:) A1B2
(Gp:) A2B2
(Gp:) S11
(Gp:) S12
(Gp:) S14
(Gp:) S13
(Gp:) S21
(Gp:) S22
(Gp:) S24
(Gp:) S23
(Gp:) Sk1
(Gp:) Sk2
(Gp:) Sk4
(Gp:) Sk3
Formato del diseño factorial de medidas repetidas, S x A x B
(Gp:) Y111 Y11k Y121 Y12k
Y1j1 Y1jk
Y211 Y22k Y221 Y22k
Y2j1 Y2jk
Yn11 Yn1k Yn21 Yn2k
Ynj1 Ynjk
(Gp:) Medias
(Gp:) S1
(Gp:) S2
(Gp:) Sn
(Gp:) .
.
.
(Gp:) Sujetos
(Gp:) Medias
(Gp:) Y1..
(Gp:) Y2..
(Gp:) .
.
.
(Gp:) Yn..
(Gp:) Y
(Gp:)
(Gp:) Tratamientos
(Gp:) A1
(Gp:) A2
(Gp:) Aj
(Gp:) B1 Bk
(Gp:)
(Gp:) B1 Bk
(Gp:)
(Gp:) B1 Bk
(Gp:)
(Gp:)
(Gp:) ..
(Gp:) ..
(Gp:) ..
(Gp:) ..
(Gp:) ..
(Gp:) ..
(Gp:) ..
(Gp:) ..
(Gp:) ..
(Gp:) Y.11
(Gp:) Y.12
(Gp:)
(Gp:) Y.21
(Gp:) Y.j1
(Gp:) Y.jk
(Gp:) Y.2k
(Gp:) ..
(Gp:) ..
(Gp:) ..
Página anterior | Volver al principio del trabajo | Página siguiente |