Función acotada.
Sea f : D ? R ? R una función real de variable real, y S ? D.
f está acotada superiormente en S ?: ?M ? R / f (x) = M ? x? S , es decir, si el conjunto imagen f (S) = {f (x) / x?S} es un conjunto acotado superiormente.
f está acotada inferiormente en S ?: ?m? R /
f (x) = m ?x? S , es decir, si el conjunto imagen f (S) = {f (x) / x?S} es un conjunto acotado inferiormente.
f está acotada en S ? : f está acotada superiormente e inferiormente en S ? ?K ? /| f (x)| = K ? x ? S , es decir, si el conjunto imagen f (S) = {f (x) / x?S} es un conjunto acotado.
Función par e impar: simetrías.
Sea f : D ? R ? R tal que – x?D si x?D
f es par ?: f (-x) = f (x) ? x? D
f es impar ?: f (-x) = – f (x) ? x? D
La gráfica de una función par es simétrica respecto al eje de ordenadas y la grafica de una función impar es simétrica respecto al origen de coordenadas.
Ejemplos:
f (x) = es par
f (x) = es impar
Función periódica.
Sea f : D ? R ? R una función real de variable real.
f es periódica ?: existe h? tal que
f (x) = f (x + h) ? x ? D
El período p de una función periódica es el valor más pequeño de h que verifica la igualdad anterior.
Operaciones con funciones.
Sean f y g dos funciones reales de variable real tales que Dom f = Dom g = D .
Función suma:
f + g : D ? R? R tal que ( f + g)(x) = : f (x) + g(x) ?x?D
Función nula:
:R ? R tal que (x) = 0 ?x? R verifica f + =f
La función opuesta de f:
– f : D ? R ? R tal que (- f )(x) = : – f (x) ? x ? D
verifica f + (- f ) =
Operaciones con funciones.
La función producto:
fg : D ? R? R tal que ( fg)(x) = : f (x)g(x) ? x ? D
La función unidad:
: R?R tal que (x) = 1 ?x? R verifica f =f
La función recíproca de f:
?x?
siendo = {x ? D / f(x) ?0}, verifica f
Operaciones con funciones.
La función cociente:
siendo = {x ? D /g (x) ? 0}.
Nota: Si Dom f ? Dom g con Dom f n Dom g ? conjunto vacio, entonces:
Dom( f + g) = Dom( fg) = Dom f n Dom g
Dom( f / g) = (Dom f n Dom g) – {x / g(x) = 0}
Composición de funciones.
Sean dos funciones f y g tales que Im g n Dom f ? conjunto vacio. Definimos la función “ g compuesta con f ” y se denota f o g de la siguiente forma:
( f o g)(x) =: f (g(x)) ? x ? Dom g / g(x)? Dom f
Análogamente, si Im f n Dom g ? conjunto vacio, se define la función “ f compuesta con g ” y se denota g o f de la siguiente forma:
(g o f )(x) =: g( f (x)) ?x? Dom f / f (x)? Dom g
La composición de funciones verifica la propiedad asociativa. No verifica, en general, la propiedad conmutativa. El elemento neutro de la composición es la función identidad I.
Función inversa.
f : D ? R ? R es inyectiva ?:
Si f es una función inyectiva (en cierto dominio) entonces existe una única función g definida sobre la imagen de f , es decir, g : Im f ? R tal que f (g(x)) = x ?x? Im f = Dom g . Así pues, Im g = Dom f . A esta función g se le llama inversa de la función f y se denota por . Por tanto
f ( (x))= x ?x ? Im f , es decir, f o = I
Se verifica también que ( f (x)) = x ? x ? Dom f , es decir, o f = I
Funciónes elementales.
Función potencial entera:
f (x) = , n? N ? {0}
Dom f = R
Im f = R si n es impar , [0,+8) si n >0 es par ,
{1} si n =0
Si n es impar entonces f es estrictamente creciente en R
Funciones elementales
Función polinómica:
f(x)= n? N ? {0} , ? 0
Dom f = R . Si n = 1 recta ; si n = 2 parábola, …
Funciones elementales
Función racional:
Es cociente de dos funciones polinómicas.
f(x)=
Dom f = {x? R / Q(x) ? 0}
Funciones elementales
Funciones circulares y sus inversas.
Funciones elementales.
Funciones circulares y sus inversas.
Funciones elementales.
Funciones circulares y sus inversas.
Funciones elementales.
Funciones elementales y sus inversas.
Funciones elementales
Función exponencial:
f (x) = , a > 0
Dom = R ; Im = (0 ,8) si a ? 1 , Im = {1} si a = 1
Es estrictamente creciente si a > 1 y estrictamente decreciente si 0 < a < 1
Funciones elementales
Función logarítmica:
Se llama función logarítmica de base a > 0 (a ? 1) ,
f (x) = , a la inversa de la función exponencial.
Dom = (0,8) ; Im = R
Es estrictamente creciente si a > 1 y estrictamente decreciente si 0 < a < 1.
Si a = e , el logaritmo se llama neperiano o natural y se representa log(x) ó ln (x) n . Si a =10 se llama decimal.
Página anterior | Volver al principio del trabajo | Página siguiente |