REPRESENTA SITUACIONES DEL ENTORNO, EMPLEANDO LOS CONCEPTOS DE FUNCION.

850 palabras 4 páginas
3.3 REPRESENTA SITUACIONES DEL ENTORNO, EMPLEANDO LOS CONCEPTOS DE FUNCION.
A. Trazo de funciones
Función Continua

Son aquellas gráficas que no presentan ningún punto aislado, saltos o interrupciones y que están hechas de un sólo trazo en un intervalo determinado son llamadas funciones continuas.

Función Discontinua

Las gráficas que presentan algún punto aislado, saltos o interrupciones, es decir, que no están hechas de un sólo trazo en un intervalo determinado, son llamadas funciones discontinuas.

Función Creciente

Es aquella cuyos valores en un intervalo determinado se incrementan, f(x1) < f(x2).
En la gráfica nos movemos hacia la derecha y también nos movemos hacia arriba.

Función
…ver más…

Hay que tener en cuenta, que, en el plano, dos rectas sólo pueden tener tres posiciones relativas (entre sí): se cortan en un punto, son paralelas o son coincidentes (la misma recta). Si las dos rectas se cortan en un punto, las coordenadas de éste son el par (x, y) que conforman la única solución del sistema, ya que son los únicos valores de ambas incógnitas que satisfacen las dos ecuaciones del sistema, por lo tanto, el mismo es compatible determinado. Si las dos rectas son paralelas, no tienen ningún punto en común, por lo que no hay ningún par de números que representen a un punto que esté en ambas rectas, es decir, que satisfaga las dos ecuaciones del sistema a la vez, por lo que éste será incompatible, o sea sin solución. Por último, si ambas rectas son coincidentes, hay infinitos puntos que pertenecen a ambas, lo cual nos indica que hay infinitas soluciones del sistema (todos los puntos de las rectas), luego éste será compatible indeterminado.

El proceso de resolución de un sistema de ecuaciones mediante el método gráfico se resume en las siguientes fases:
i. Se despeja la incógnita y en ambas ecuaciones. ii. Se construye, para cada una de las dos funciones de primer grado obtenidas, la tabla de valores correspondientes. iii. Se representan gráficamente ambas rectas en los ejes coordenados. iv. En este último paso hay tres posibilidades:
a. Si ambas rectas se cortan, las coordenadas del punto de corte son

Documentos relacionados