La Trigonometria En La Vida Cotidiana
NOMBRE: ANDRES ELIHUD MARTINEZ GONZALEZ
GRUPO: 2 D P006
INTRODUCCION
En este proyecto se estará explicando sobre la importancia de la trigonometría en la vida cotidiana, como para la construcción de casas, edificios, carreteras, sillas, mesas, incluso en la astronomía para la medición de distancia entre estrellas o planetas, etc. además de la explicación de las razones trigonométricas: seno, coseno; tangente, cotangente; secante y cosecante. Y algunos ejemplos y problemas que aparecerán en imágenes.La trigonometría es una rama de la matemática, cuyo significado etimológico es "la medición de los triángulos". En términos generales, la trigonometría es el estudio de las razones …ver más…
Si q es uno de los ángulos agudos de un triángulo rectángulo (figura 4), las definiciones de las funciones trigonométricas dadas más arriba se pueden aplicar a q como se explica a continuación. Si el vértice A estuviera situado en la intersección de los ejes x e y de la figura 3, si AC descansara sobre la parte positiva del eje x y si B es el punto P de manera que AB = AP = r, entonces el sen q = y/r = a/c, y así sucesivamente:
Los valores numéricos de las funciones trigonométricas de ciertos ángulos se pueden obtener con facilidad. Por ejemplo, en un triángulo rectángulo isósceles, se tiene que q = 45 ° y que b = a, y además se sabe, por el Teorema de Pitágoras, que c2= b2+ a2. De aquí se deduce que c2= 2a2 o que c = a¶2. Por tanto
Los valores numéricos de las funciones trigonométricas de un ángulo cualquiera se pueden hallar de forma aproximada dibujando el ángulo en su posición normal utilizando la regla, el compás y el transportador de ángulos. Si se miden x, y y r es fácil calcular las proporciones deseadas. En realidad, basta con calcular los valores del sen q y del cos q para unos cuantos ángulos específicos, pues los valores de los demás ángulos y las demás funciones se calculan utilizando las igualdades que se mencionan en el siguiente apartado.
Las razones trigonométricas se pueden utilizar, fundamentalmente, para resolver triángulos, así como para resolver diferentes situaciones