Teorema del Muestreo
Sabemos que las señales se pueden descomponer como un sumatorio de senos y cosenos cada uno de una amplitud, frecuencia y fase diferente. Esto se llama Desarrollo Serie de Fourier.
Si dichas sinusoides las muestreamos, el caso más crítico de muestreo será aquella de mayor frecuencia (frecuencia máxima fm que corresponde con el periodo mínimo Tmin=1/ fm) la cual vamos a llamar:
f(t)=A sin(2?fm t+ ?) donde A: amplitud, t: tiempo y ?: fase de la señal.
El Teorema de Muestreo formulado por Nyquist 1924 dice: que si queremos reconstruir una señal de frecuencia máxima fm, debemos de muestrear a 2fm y la frecuencia de muestreo (sampling) se llama fs o también frecuencia de modulación.
Ejemplo1, si un instrumento musical emite tonos (o sinusoides) de 20KHz, debo muestrear a 40KHz (40.000 muestras por segundo).
Ejemplo 2: los CD de audio muestrean la señal 44.100 veces por segundo, por tanto pueden captar frecuencias de hasta 22,05 KHz
Ejemplo3, si la voz ( en telefonía !!) tiene un espectro de 4KHz, para poder muestrear y recuperar la señal requeriríamos 8.000 muestras por segundo.
Teorema del Muestreo
Podemos verlo fácilmente si tenemos en cuenta que, si sólo tenemos un valor o muestra por periodo, es decir muestreando a fm no seríamos capaces de conocer ni la amplitud ni la fase.
Sin embargo con al menos 2 muestras como dice el Teorema, dos puntos de f(t) sí que somos capaces de trazarla, por ejemplo si tenemos el mínimo y el máximo de f(t) podemos trazar entre dichos puntos la sinusoide f(t). Además, los puntos están equidistantes, porque siempre se muestrea a la misma velocidad.
Otra forma de verlo, es fm = fs /2 y fs la conocemos contando las muestras en un segundo. Si tenemos los puntos (t1,f(t1)) y (t2,f(t2)), siendo t2= t1+Tmin /2, podemos plantear el sistema de ecuaciones
Ecuación 1: f(t1)=A sin(2?fm t1 + ?)
Ecuación 2: f(t2)=A sin(2?fm t2 + ?)
Por tanto, tenemos 2 ecuaciones y 2 incógnitas A y ?, con lo cual podemos resolver y despegar las incógnitas.
Muestreo (cont.)
En una señal cuando se transmite, la capacidad que posee para transportar información, o bien viene limitado por la propia señal (que es lo visto anteriormente, una señal con frecuencia máxima fm) y su ancho de banda, o bien viene limitado por el ancho de banda del canal en la que es transmitida. En resumen, o el ancho de banda lo fija la fuente o bien el canal.
Ej. La voz humana, tiene un BW >4KHz, pero los circuitos de las centrales operan hasta 4KHz.
100 Hz
1 KHz
10 KHz
Frecuencia
100 KHz
10 Hz
Potencia relativa
0 dB
-20 dB
-40 dB
-60 dB
Rango dinámico
aproximado
de la voz
Canal telefónico
Límite superior
de la radio AM
Límite superior
de la radio FM
Rango dinámico
aproximado de
la música
MÚSICA
VOZ
Ruido
Espectro acústico de la voz y la música
3,4 KHz
300 Hz
Potencia relativa=Potencia/Potencia máxima
Teorema del Muestreo (limitación por canal)
En un caso general, como un canal analógico (que transporta señales analógicas no moduladas), se puede demostrar que los baudios (símbolos por segundo) posibles enviados con un canal de ancho de banda BW es:
Capacidad [baudios]=2*BW [Hz]
Si fuera modulada, sería Capacidad [baudios]=BW [Hz]
Y la capacidad binaria de dicho canal es:
Capacidad [bits/segundo]= 2*BW*log2(número de niveles por símbolo)= 2*BW*log10(número de niveles por símbolo)/ log10(2)
El número de niveles por símbolo lo determina la constelación de la modulación utilizada.
Pero el número de símbolos a introducir en un canal tiene también un límite …
En el caso del canal telefónico, como utilizamos de 300 a 3400 Hz, al ser modulada porque no parte de 0 Hz, sino que va metida en la banda 300 a 3400Hz, el máximo de baudios son 3100 baudios.
Relación señal/ruido
La relación señal/ruido, también SR o S/N (Signal to Noise Ratio) se mide normalmente en decibelios (dB):
S/N (en dB) = 10* log10 (S/N)=S(db) N(db)
Teorema (a.k.a Ley) de Shannon-Hartley (1948)
La cantidad de información digital (límite y teórica) que puede transferirse por un canal analógico está limitada por su ancho de banda (BW) y su relación señal/ruido lineal (S/N), según la expresión:
Capacidad [bits por segundo] = BW [Hz] * log2 (1 + S/N) = BW * log10(1+S/N)/log10(2)
Ejemplo: En el sistema telefónico, la máxima S/N que se puede obtener debido al proceso A/D y D/A realizado sobre la voz es de 36 dB (=103.6). Si el canal utilizado para enviar la voz es de 3,1KHz[1], por tanto la capacidad binaria del canal es :
Capacidad [bps] = 3,1 KHz * log2 (1+3981) = 37,07 Kbps [2]
Que es la máxima capacidad teórica según Shannon que puede transmitirse en bps en un canal analógico, donde la S/N del canal, queda fijada por el proceso de cuantificación A/D de los conversores en la entrada a las centrales.
[1]Los 3.1KHz proceden de utilizar márgenes de seguridad en los propios canales de voz con 4KHz reservados.
[2] otros autores llegan a un valor de 33,4 Kbps
Anexo A
SubTransformada de Fourier
( lamentablemente las señales periódicas no tienen información es por eso que las señales de comunicaciones se pasan al dominio de la frecuencia con la Transformada
)
Transformada de Fourier
Estas expresiones nos permiten calcular la expresión F(w) (dominio de la frecuencia) a partir de f(t) (dominio del tiempo) y viceversa
(Gp:) Identidad
de Fourier
(Gp:) Transformada
De Fourier
Transformada de Fourier
Notación: A la función F(w) se le llama transformada de Fourier de f(t) y se denota por F, es decir
En forma similar, a la expresión qu enos permite obtener f(t) a partir de F(w) se le llama transformada inversa de Fourier y se denota por F 1 ,es decir
Transformada de Fourier
Ejemplo. Calcular F(w) para el pulso rectangular f(t) siguiente
Solución. La expresión en el dominio del tiempo de la función es
(Gp:) -p/2 0 p/2
(Gp:) 1
(Gp:) f(t)
(Gp:) t
Transformada de Fourier
Integrando
Usando la fórmula de Euler
Obsérvese que el resultado es igual al obtenido para cn cuando T?? , pero multiplicado por T.
Transformada de Fourier
F(W) en función de la frecuencia
Anexo B : OFDM
SubUna nueva (?) técnica de acceso al medio
Introducción a OFDM
OFDM
OFDM
FDM vs OFDM
FDM vs OFDM
Ventajas en Multipath
OFDMA las portadoras tienen ventajas en Multipath
OFDMA solamente selecciona subcarriers con menor degradación de canal previniendo la perdida de recursos del sistema (potencia o throughput ) => mayor capacidad del sistema
(Gp:) Señal Enviada
(Gp:) Señal Recibida
Multipath
Eficiencia Espectral
2.5G TDMA: Muy limitada la velocidad y baja eficiencia espectral (1.0-1.5 bps/Hz)
(Gp:) 500kHz
(Gp:) 5MHz
3G WCDMA: Razonable data rate, rango y movilidad, mejora la eficiencia espectral (1.5-2.5 bps/Hz)
WiFi: OFDM 64FFT, Velocidad razonable rango y movilidad limitada , mejora eficiencia espectral (2-3 bps/Hz)
WiMAX:OFDMA, hasta 2048FFT gran mejora en rango y movilidad Potencial , la mejor eficiencia espectral (3-4 bps/Hz)
(Gp:) 15 MHz
(Gp:) 20 MHz
Es un factor de importancia para los servicios de datos
La escasez (o utilidad ) del espectro hace de la eficiencia un factor clave para la aprobación del mismo y el éxito del modelo de negocios.
Los organismos de regulación deben reciclar el espectro para los sistemas existentes con baja eficiencia .
ANEXO C
SubTasa de eficiencia
Tasa de error vs Relación Señal/Ruido Modulación
Eficiencia Espectral-Limite de Shannon
Tasas binarias útiles
SINR
BER/SNR
BER/SNR
Eficiencia Espectral : limite Shannon